Righto, try again..
By factoring in the \frac{\hbar}{2} in each matrix:
B_{x}\hat{S_{x}} = \left[ \begin{array}{cc} 0 & \left(\frac{B_{x}\hbar}{2}\right) \\ \left(\frac{B_{x}\hbar}{2}\right) & 0 \end{array} \right]
B_{y}\hat{S_{x}} = \left[ \begin{array}{cc} 0 & \left(\frac{-iB_{y}\hbar}{2}\right) \\ \left(\frac{iB_{y}\hbar}{2}\right) & 0 \end{array} \right]
B_{z}\hat{S_{x}} = \left[ \begin{array}{cc} \left( \frac{B_{z}\hbar}{2}\right) & 0 \\ 0 & \left(\frac{-B_{z}\hbar}{2}\right) \end{array} \right]
Then by factoring in the \alpha:
B_{x}\hat{S_{x}} = \left[ \begin{array}{cc} 0 & \left(\frac{\alpha B_{x}\hbar}{2}\right) \\ \left(\frac{\alpha B_{x}\hbar}{2}\right) & 0 \end{array} \right]
B_{y}\hat{S_{x}} = \left[ \begin{array}{cc} 0 & \left(\frac{-i\alpha B_{y}\hbar}{2}\right) \\ \left(\frac{i\alpha B_{y}\hbar}{2}\right) & 0 \end{array} \right]
B_{z}\hat{S_{x}} = \left[ \begin{array}{cc} \left( \frac{\alpha B_{z} \hbar}{2}\right) & 0 \\ 0 & \left(\frac{-\alpha B_{z} \hbar}{2}\right) \end{array} \right]
Therefore the Hamiltonian \hat{H} is the sum of these three matrices:
\hat{H} = \left[ \begin{array}{cc} \left(\frac{\alpha B_{z} \hbar}{2}\right) & \left(\frac{\alpha \hbar}{2}\left(B_{x} - iB_{y}\right)\right) \\ \left(\frac{\alpha \hbar}{2}\left(B_{x} + iB_{y}\right)\right) & \left(\frac{-\alpha B_{z} \hbar}{2}\right) \end{array} \right]
That should be correct now then.
As far as then diagonalizing the Hamiltonian matrix derived, I have read the info on that Wiki page, and a few other places online, but I still don't get how to diagonalize it.. or atleast, not in a way that doesn't get horribly messy.
I've got an idea, but to ease on latex code inclusion on a method that could be completely wrong, I've simplified it..
So say for a matrix:
H = \left[ \begin{array}{cc} 5 & 4 \\ (-4) & 2 \end{array} \right]
I take these steps:
det(H) = det\left[ \begin{array}{cc} (5-\lambda) & 4 \\ (-4) & (2-\lambda) \end{array} \right]=0
\left[\left(5 - \lambda\right)\left(2-\lambda\right)\right] - \left[(4)(-4)\right] = 0
\left[10 - 7\lambda + \lambda^{2} + 16\right] = \lambda^{2} - 7\lambda + 26 = 0
And then the Eigenvalues are the values of \lambda for which that equation holds. Obviously the numbers I chose were not very good as to give a nice answer, but hopefully the jist is clear.
.. do I do it at all something like this?!?