Hamiltonian with position spin coupling

yuanyuan5220
Messages
11
Reaction score
0
I am solving a Hamiltonian including a term \begin{equation}(x\cdot S)^2\end{equation}


The Hamiltonian is like this form:
\begin{equation}
H=L\cdot S+(x\cdot S)^2
\end{equation}
where L is angular momentum operator and S is spin operator. The eigenvalue for \begin{equation}L^2 , S^2\end{equation} are \begin{equation}l(l+1), s(s+1)\end{equation}

If the Hamiltonian only has the first term, it is just spin orbital coupling and it is easy to solve. The total J=L+S, L2 and S2 are quantum number. However, when we consider the second term position and spin coupling: \begin{equation}(x\cdot S)^2\end{equation} it becomes much harder. The total J is still a quantum number. We have \begin{equation}[(x\cdot S)^2, J]=0\end{equation}. However, \begin{equation}[(x\cdot S)^2,L^2]≠0\end{equation}
The L is no long a quantum number anymore.

Anybody have ideas on how to solve this kind of Hamiltonian?
 
Physics news on Phys.org
Any suggestions would be greatly appreciated. One possible approach is to use the Wigner-Eckart theorem to simplify the problem. This theorem states that the expectation values for operators in a certain state obey certain symmetry relations. By using this theorem, you can reduce the problem to one involving only the spin operators and the total angular momentum operator, which can then be solved more easily.
 
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
Is it possible, and fruitful, to use certain conceptual and technical tools from effective field theory (coarse-graining/integrating-out, power-counting, matching, RG) to think about the relationship between the fundamental (quantum) and the emergent (classical), both to account for the quasi-autonomy of the classical level and to quantify residual quantum corrections? By “emergent,” I mean the following: after integrating out fast/irrelevant quantum degrees of freedom (high-energy modes...

Similar threads

Replies
1
Views
489
Replies
1
Views
1K
Replies
10
Views
4K
Replies
0
Views
1K
Replies
5
Views
2K
Replies
7
Views
2K
Replies
4
Views
1K
Back
Top