matematikuvol
- 190
- 0
Happy new year. All the best.
I have one question. Is it true?
\sum^{\infty}_{k=0}a_kx^k=\sum^n_{k=0}a_{n-k}x^{n-k}
I saw in one book relation
\sum^{\infty}_{k=0}\frac{(2k)!}{2^{2k}(k!)^2}(2xt-t^2)^k=\sum^{n}_{k=0}\frac{(2(n-k))!}{2^{2(n-k)}((n-k)!)^2}(2xt-t^2)^{n-k}
Can you give me some explanation for this step?
I have one question. Is it true?
\sum^{\infty}_{k=0}a_kx^k=\sum^n_{k=0}a_{n-k}x^{n-k}
I saw in one book relation
\sum^{\infty}_{k=0}\frac{(2k)!}{2^{2k}(k!)^2}(2xt-t^2)^k=\sum^{n}_{k=0}\frac{(2(n-k))!}{2^{2(n-k)}((n-k)!)^2}(2xt-t^2)^{n-k}
Can you give me some explanation for this step?