Mathematica Hard mathematical induction question

AI Thread Summary
The discussion revolves around proving a mathematical induction statement for integers n greater than or equal to 1. The initial proof demonstrates that the base case holds true for n = 1 and establishes an assumption for n = k. The proof then transitions to show that if the statement is true for n = k, it must also hold for n = k + 1, thereby completing the induction step. Participants emphasize the importance of understanding the assumptions and the need to explore the statements creatively to grasp the underlying concepts. Engaging with the proofs in a less polished manner can lead to deeper learning and insight.
ZOMGbirdy
Messages
2
Reaction score
0
Hi everyone, I have been trying to do this induction question... but can't seem to understand how to do it.

Prove by induction that, for all integers n is greater than or equal to 1,

(n+1)(n+2)...(2n-1)2n = 2^n[1x3x...x(2n-1)]

This is what someone else has given as the answer:

For n = 1
LHS = (1 + 1) = 2
RHS = 21 = 2
LHS=RHS hence statement is true for n = 1
Assume the statement is true for n = k
(k + 1)(k + 2)...(2k - 1)2k = 2k[1 x 3 x ... x (2k - 1)]
Required to prove statement is true for n = k + 1
(k + 2)(k + 3)...(2k + 1)(2k + 2) = 2k + 1[1 x 3 x ... x (2k + 1)]
LHS = (k + 2)(k + 3)...(2k + 1)(2k + 2)
= 2(k + 1)(k + 2)(k + 3)...2k(2k + 1)
= 2(2k + 1)2k[1 x 3 x ... x (2k - 1)] by assumption
= 2k + 1[1 x 3 x ... x (2k - 1) x (2k + 1)]
= RHS
If the statement is true for n = k, it is true for n = k + 1
Since the statement is true for n = 1, it is true for all positive integers n by induction.

I think I understand everything up until he actually makes the assumption. I don't understand the assumption and what he is actually subbing into the assumption.
 
Physics news on Phys.org
(k+1)(k+2)(k+3)...(2k-1)2k = 2k[1x3x5...x(2k-1)] = P(k)
... assumed true. (note: you left off the power?)

(k+2)(k+3)(k+4)...(2k+1)2(k+1) = 2(k+1)[1x3x5x...x(2k+1)] = P(k+1)
... needs to be proved. Kinda suggestive isn't it?

Consider:
Is the LHS of P(k+1) the same as the LHS of P(k)/(k+1) ?

The form of the LHS of P(n) is
f1f2f3...fm=Pm(k)

where
fi = k+i

but for i=m, fm = k+m = 2k(2k-1)
so what is fm-1 ?
 
Sorry, didn't realize the powers weren't copied properly.

Thanks for your reply, yea I get it now - I was looking at it from the wrong perspective.
 
No worries - when you are shown example proofs, they are all so very polished and clever. What you should realize is that these are the finished proofs - that is not how they were arrived at.

Don't be frightened to play around with the statements you are asked to prove. Mess about with them - figure out how they work. Look for patterns. Ask what these statements are telling you. This part is quite untidy and inelegant but you'll learn more that way.

Have fun :)
 
Back
Top