Having trouble understanding variance of OLS estimator

  • Thread starter Thread starter chevrox
  • Start date Start date
  • Tags Tags
    Ols Variance
chevrox
Messages
2
Reaction score
0
So in computing the variance-covariance matrix for β-hat in an OLS model, we arrive at

VarCov(β-hat)=(σ_ε)^2E{[X'X]^-1}

However, I'm incredulous as to how X is considered non-stochastic and how we can just eliminate the expectation sign and have

VarCov(β-hat)=(σ_ε)^2[X'X]^-1

I'm accepting this to be true (since it's so written in the text) but I'm taking a leap of faith here: if this is true, the elements in the VarCov matrix are expressed in terms of sample statistics and are therefore stochastic. I thought that the variance of an estimator of a parameter, if consistent, should be a deterministic parameter itself and should not depend on the sample observations (besides sample size, n), such as the ones we see in using Cramer-Rao lower bound to determine efficiency. Likely I'm understanding something wrong here, any pointers would be greatly appreciated!
 
Physics news on Phys.org
You haven't clearly stated a mathematical question. Is X supposed to be the vector of independent variables? If so, they aren't considered to be stochastic if you compute the regression so it minimizes the least square error in predicting the dependent variables, which are "Y", by tradition. If you have data of the form (X,Y) and there are "errors" in both X and Y, you should use a "total least squares" model.
 
Hey chevrox and welcome to the forums.

Like Stephen Tashi I am going wait for clarification of what your variables are but I did want to comment on one thing you said:

chevrox said:
I thought that the variance of an estimator of a parameter, if consistent, should be a deterministic parameter itself and should not depend on the sample observations (besides sample size, n), such as the ones we see in using Cramer-Rao lower bound to determine efficiency. Likely I'm understanding something wrong here, any pointers would be greatly appreciated!

That should definitely be the case for a consistent estimator and it should be the case that the variance 'shrinks' with a higher sample size. If the variance does not do this, then basically your estimate doesn't get 'better' with a higher sample size and it becomes rather pointless to do statistics with any kind of sample using that estimator.
 
Thanks for the replies! Yes, X is the nxk matrix of explanatory variables such that y=Xβ+ε. I think I understand it now. Variables in X do not necessarily follow a stochastic process, and even if they do, since all variability of y is explained by ε in the model, the independent variables affect the dependent variable solely through their observed values rather than a range of distribution where those values could fall, and it is therefore considered non-stochastic. And meanwhile β-hat does not lose its consistency since E(β-hat)=β (which is possible only if X is non-stochastic) and Var(β-hat)→0 even though Var(β-hat) varies with sample.
 
Namaste & G'day Postulate: A strongly-knit team wins on average over a less knit one Fundamentals: - Two teams face off with 4 players each - A polo team consists of players that each have assigned to them a measure of their ability (called a "Handicap" - 10 is highest, -2 lowest) I attempted to measure close-knitness of a team in terms of standard deviation (SD) of handicaps of the players. Failure: It turns out that, more often than, a team with a higher SD wins. In my language, that...
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Back
Top