Having troubles getting this derivative

  • Thread starter Thread starter bmed90
  • Start date Start date
  • Tags Tags
    Derivative
bmed90
Messages
99
Reaction score
0

Homework Statement



find dx/dt and dy/dt


Homework Equations



x= sin(t)-tcos(t)

y=cos(t)+tsin(t)

The Attempt at a Solution



dx/dt= cos(t)-(-tsin(t)) = cos(t)+tsint

dy/dt=-sin(t)+tcost
 
Physics news on Phys.org
You're forgetting a minor detail. Recall the rules for differentiation, particularly products.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top