One part of the problem is discovering if the limit exists or not, then you have to prove it.
The discovery itself can be difficult. Here are some strategies for that. Try some curves like straight lines with slope m and parabolas that go through the point, so that it is a one dimensional limit along those curves. You may find that the limit doesn't exist this way. But If you find no issue here, this does not prove that the limit exists, for the limit relies on any curve, which is hard to consider all, so we let x,y go to x0,y0 in an arbitrary way (compare proofs of 2-d limits that do exist).
The algebra was not telling me anything quickly, so I cheated and looked at the plot on wolfram alpha (on my phone yo!). That told me that the limit didn't exist, and to try the curve y=x, and that for x<1, the denominator is negative, while for x>1, the denominator is positive. Oh, and sometimes when the limit goes to infinity, we say the limit exists, but not here even since different paths give positive and negative infinity.