- #1
Gregg
- 459
- 0
Homework Statement
F(x,t) satisfies
[tex] \frac{\partial^2 F(x,t)}{\partial x^2}=\frac{\partial F(x,t)}{\partial t} [/tex]
With the following boundary conditions
[tex] \frac{\partial F(0,t)}{\partial x}=\frac{\partial F(1,t)}{\partial x} [/tex]
[tex]F(0,t) = F(1,t) [/tex]
[tex] F(x,0) = x^2 \text{ for } x \in (0,1) [/tex]
The Attempt at a Solution
I've assumed it's separation of variables but I am unsure if I can do this
If it is
[tex] F(x,t) = \phi(x) G(t) [/tex]
I end up with
[tex] \frac{d^2\phi}{d x^2} +\lambda \phi = 0 [/tex]
[tex] \frac{dG}{dt} = -\lambda G [/tex]
So
[tex] \phi(x) = c_1 \cos(x\sqrt{\lambda}) + c_2 \sin(x\sqrt{\lambda}) [/tex]
I also got that the constants are
[tex] c_1 = -\frac{1+\cos(\sqrt{\lambda})}{\sin(\sqrt{\lambda})} [/tex]
[tex] c_2 = \frac{1+\cos(\sqrt{\lambda})}{\cos(\sqrt{\lambda})-1} [/tex]
unsure where to go from here in terms of the function phi. lambda denotes eigenfunctions?