Heat equation on a half line: Techniques for Solving and Verifying Solutions

AI Thread Summary
The discussion focuses on solving the heat equation on a half line with a time-dependent boundary condition at x=0 and an initial condition. Participants suggest various techniques, including the Laplace transform and heat kernel methods, as alternatives to the sine transformation, which results in a zero value at x=0. The importance of providing the complete problem for better assistance is emphasized, with a mention of Fourier decomposition for specific cases. The original poster expresses difficulty in verifying their solution against the initial condition, particularly when evaluating the limit as t approaches zero. Overall, the conversation highlights the complexity of the problem and the need for clarity in boundary conditions and solution verification.
jollage
Messages
61
Reaction score
0
Heat equation on a half line!

Hi,

I am now dealing with the heat equation on a half line, i.e., the heat equation is subject to one time-dependent boundary condition only at x=0 (the other boundary condition is zero at the infinity) and an initial condition.

I searched online, it seems that for the half line problem, only the sine transformation can solve the heat equation, but in that case, the final result is always zero at x=0 since when doing sine transformation, one should assume that the to-be-transformed function is odd, so the function is zero at x=0.

My question is, do you know any other techniques to solve the heat equation on the half line without using sine transform?

Thanks.
 
Science news on Phys.org
Sinusoidally varying temperatures don't really make sense. Try using the Laplace transform.
 
What is the specific problem?
 
jollage said:
I searched online, it seems that for the half line problem, only the sine transformation can solve the heat equation, but in that case, the final result is always zero at x=0 since when doing sine transformation, one should assume that the to-be-transformed function is odd, so the function is zero at x=0.

IF you tell us where you got that (wrong) idea, we might be able to explain what the website means, or confirm that it really is wrong.

mikeph said:
Sinusoidally varying temperatures don't really make sense. Try using the Laplace transform.

Sinusoidal in time, or in space? For example if you were applying a heat flux at x = 0 which was a periodic function of time, it would make good sense to do a Fourier decomposition of it.

As Chestermiller said, posting the complete problem would help.
 
Fourier, yes, decomposing it into sine waves, not so much. You need those exponential decays to make it die at infinity.
 
Hi,

Thanks for all your replies!

I didn't say it's sinusoidal, it's just a time-dependent function, not periodic.

Sorry, I shouldn't say "only the sine transformation can solve the heat equation". Yesterday, I just found using heat kernel can also solve the problem on a half line.

The document I upload is the note I took. I have a problem. When I tried to verify the solution by checking the initial condition and boundary condition, I have some problem to see the solution can really give initial condition, i.e., to set t=0 in the equation 18 of the document. I know one should take the limit as t->0+, but I failed to reach that. Do you have any clue?

Thanks!
 

Attachments

I need to calculate the amount of water condensed from a DX cooling coil per hour given the size of the expansion coil (the total condensing surface area), the incoming air temperature, the amount of air flow from the fan, the BTU capacity of the compressor and the incoming air humidity. There are lots of condenser calculators around but they all need the air flow and incoming and outgoing humidity and then give a total volume of condensed water but I need more than that. The size of the...
I was watching a Khan Academy video on entropy called: Reconciling thermodynamic and state definitions of entropy. So in the video it says: Let's say I have a container. And in that container, I have gas particles and they're bouncing around like gas particles tend to do, creating some pressure on the container of a certain volume. And let's say I have n particles. Now, each of these particles could be in x different states. Now, if each of them can be in x different states, how many total...
Thread 'Why work is PdV and not (P+dP)dV in an isothermal process?'
Let's say we have a cylinder of volume V1 with a frictionless movable piston and some gas trapped inside with pressure P1 and temperature T1. On top of the piston lay some small pebbles that add weight and essentially create the pressure P1. Also the system is inside a reservoir of water that keeps its temperature constant at T1. The system is in equilibrium at V1, P1, T1. Now let's say i put another very small pebble on top of the piston (0,00001kg) and after some seconds the system...
Back
Top