Heat equation PDE for spherical case

FiberOptix
Messages
12
Reaction score
0
Hello, I believe this is my first post. I would like to solve the heat equation PDE with some special (but not complicated) initial conditions, my scenario is as follows:

A perfectly spherical mass of water, where the outer surface is at some particular temperature at t=0 (but not held at that temperature).

It seems simple enough but for some reason I have not been able to find all that much satisfying those conditions. Any help would be sincerely appreciated, even if it's only to point out a resource.

Thank you,

FiberOptix
 
Physics news on Phys.org
Come now, it's almost been a week! I'm interested in 1D and 2D solutions as well if that makes it easier. I hope to have something soon, and if this really is a big problem for most people I'll write it up in latex and post a link.
 
Hi,
have you tried separation of variables? the solution should look similar to the l=0 free wave solution of spherically symmetric Schroedinger equation with t replaced by -it.
This help?
 
mheslep said:

Actually if you look at my initial post you may find that there are a few details that make the generalization from these resources a little difficult, hence my plea for help on this forum. I even found a few better resources than those by googling but not until I got Carslaw & Jeager's book from the library here was I really on the right track.
 
FiberOptix said:
Actually if you look at my initial post you may find that there are a few details that make the generalization from these resources a little difficult, hence my plea for help on this forum. I even found a few better resources than those by googling but not until I got Carslaw & Jeager's book from the library here was I really on the right track.
Yes, sorry, so you did. IIRC the often missed trick for full sphere problems is forcing the boundary condition u(t,theta=0) == u(t,theta=2pi). Same with the first derivative BC's.
 
Thread 'Direction Fields and Isoclines'
I sketched the isoclines for $$ m=-1,0,1,2 $$. Since both $$ \frac{dy}{dx} $$ and $$ D_{y} \frac{dy}{dx} $$ are continuous on the square region R defined by $$ -4\leq x \leq 4, -4 \leq y \leq 4 $$ the existence and uniqueness theorem guarantees that if we pick a point in the interior that lies on an isocline there will be a unique differentiable function (solution) passing through that point. I understand that a solution exists but I unsure how to actually sketch it. For example, consider a...
Back
Top