Hi Gulli. I am not familiar with the "heat bath method". Here's a page I found that mentions and briefly describes is:
http://cours-physique.lps.ens.fr/index.php/TD08_Heat-bath_algorithm_for_the_Ising_model_2011. I will assume that is what you books also talks about in the following.
According to this, you pick a random (random! see below) spin, and chose its new value according to a probability that depends on its neighbouring spins. Apart from some possible free parameters that is the same as flipping it with a probability that depends on its neighbouring spins and its current value.
Gulli said:
My book "Introduction to Statistical Physics" (Kerson Huang) says 'It can be shown that one step in the heat bath method is equivalent to an infinite number of Metropolis steps.' It and other sources say the heat bath method is supposed to be much faster [...]
That is, at best, true for an infinite repeated Metropolis flipping of the same spin. And that is not the type of problems you want to solve with Monte Carlo. If you are interested in the problem in which only a single spin can flip, you can just solve that problem analytically. I don't see how the "heat bath" is supposed to be faster than the Metropolis move. But then, I don't know how your sources define "faster".
What would be the physical justification that allows for the Metropolis method to be carried out with different sets of probabilities (as with a dice, you'd expect only one set of probabilities to be correct)?
Generally, Monte-Carlo sampling is not physical itself (*), so neither is the reason. It is, however, quite easy to see: Assume that in the Metropolis algorithm you add a step where after having chosen a random lattice site, with 50% probability you either reject the flip immediately (and pick the next spin at random) or continue with the algorithm as normal. All that changes is that your algorithm slows down, because half of your proposed moves are rejected "for nothing". This is, of course, equivalent with accepting spin flips with only half of the original probability (note that in this case "always flip if the energy is reduced" is to be interpreted as a 100% flip probability).
So I don't think the two methods are the same except for their probability sets.
I still do, but admittedly didn't actually check the numbers.
My book advices me to go through the spins systematically for the Metropolis method (I think that is because the probability of selecting spins 1, 2 and 3 in sequence is the same as that of selecting spins 23, 48 and 71, so why bother with random selection that eats up computing resources?), it doesn't say how I should select spins for the heath bath method, some of my other sources say I should select at random.
Selecting the spins at random is correct for both algorithms (*). Selecting them sequentially is probably correct, too. But at least the mainstream proof for correctness I know doesn't work in this case. I am not convinced that it actually is faster, since you gain some CPU time for a single step, but introduce correlations between your steps that (in addition to putting the correctness of the whole algorithm in question) may well reduce the effectiveness of the algorithm globally. I would advice against sequential picking, but I understand that trading formal justification of your algorithm for a potential performance increase is tempting.
From what you wrote I have some doubts about the book you are using. The Amazon reviews and the fact that the author is over 80 years of age also support my feeling that the book is not a proper read for an introduction to Monte Carlo computer simulations. If you want to seriously go into Monte Carlo methods then a specialized book (i.e. one assuming you already know thermodynamics and statistical mechanics and only want to read about Monte Carlo methods as they are actually used in research in these fields) I can recommend Newman, Barkema: "Monte Carlo Methods in Statistical Physics" (disclaimer: as I am a 2nd generation "academic sibling" of one of the authors, this opinion is strongly biased by the "the book describes MC exactly the way
I use it"-effect).
(*) Explaining these points in detail would be beyond the current scope. But I can gladly go into more detail if your are interested (for which it would help to know a bit about your background, though).