TeTeC
- 55
- 0
Hello everyone.
'A carton of milk is placed on a table. It has 2 holes pierced through a vertical side. At one point in time, the 2 jets of milk flowing out are reaching the table a the same point. Determine the height of milk in the carton as a function of the respective heights y_{{s}} and y_{{i}} of the superior and inferior holes.'
Here is my work:
The equations of motion first, used in this situation:
x=v_{{x_{{s}}}}t_{{s}} (1)
x=v_{{x_{{i}}}}t_{{i}} (2)
0=1/2\,g{t_{{s}}}^{2}+y_{{s}} (3)
0=1/2\,g{t_{{i}}}^{2}+y_{{i}} (4)
Where h is the height of milk in the carton, assuming that Torricelli's Theorem can be used here, I have in equations (1) and (2):
x=\sqrt {2g \left( h-y_{{s}} \right) }t_{{s}} (5)
x=\sqrt {2g \left( h-y_{{i}} \right) }t_{{i}} (6)
Then, when replacing (5) and (6) in equations (3) and (4):
0=1/4\,{\frac {{x}^{2}}{h-y_{{s}}}}+y_{{s}} (7)
0=1/4\,{\frac {{x}^{2}}{h-y_{{i}}}}+y_{{i}} (8)
Using equation (8), I find:
{x}^{2}=-4\,y_{{i}} \left( h-y_{{i}} \right)
Then I replace in equation (7) and follows a few lines of development:
-{\frac {y_{{i}} \left( h-y_{{i}} \right) }{h-y_{{s}}}}+y_{{s}}
-y_{{s}}h+{y_{{s}}}^{2}=-y_{{i}}h+{y_{{i}}}^{2}
-y_{{s}}h+y_{{i}}h={y_{{i}}}^{2}-{y_{{s}}}^{2}
h={\frac {{y_{{i}}}^{2}-{y_{{s}}}^{2}}{y_{{i}}-y_{{s}}}}
h=y_{{i}}+y_{{s}}
Actually, I don't have obvious problems with this exercice, I just find the result quite amazing, for this is really a simple answer... Maybe I'm just unable to deal with such easy answers.
The question is : Is this seems to be right?
Thanks a lot!
P.S: the wording is translated from French... Excuse me for any misunderstanding or English mistake.
'A carton of milk is placed on a table. It has 2 holes pierced through a vertical side. At one point in time, the 2 jets of milk flowing out are reaching the table a the same point. Determine the height of milk in the carton as a function of the respective heights y_{{s}} and y_{{i}} of the superior and inferior holes.'
Here is my work:
The equations of motion first, used in this situation:
x=v_{{x_{{s}}}}t_{{s}} (1)
x=v_{{x_{{i}}}}t_{{i}} (2)
0=1/2\,g{t_{{s}}}^{2}+y_{{s}} (3)
0=1/2\,g{t_{{i}}}^{2}+y_{{i}} (4)
Where h is the height of milk in the carton, assuming that Torricelli's Theorem can be used here, I have in equations (1) and (2):
x=\sqrt {2g \left( h-y_{{s}} \right) }t_{{s}} (5)
x=\sqrt {2g \left( h-y_{{i}} \right) }t_{{i}} (6)
Then, when replacing (5) and (6) in equations (3) and (4):
0=1/4\,{\frac {{x}^{2}}{h-y_{{s}}}}+y_{{s}} (7)
0=1/4\,{\frac {{x}^{2}}{h-y_{{i}}}}+y_{{i}} (8)
Using equation (8), I find:
{x}^{2}=-4\,y_{{i}} \left( h-y_{{i}} \right)
Then I replace in equation (7) and follows a few lines of development:
-{\frac {y_{{i}} \left( h-y_{{i}} \right) }{h-y_{{s}}}}+y_{{s}}
-y_{{s}}h+{y_{{s}}}^{2}=-y_{{i}}h+{y_{{i}}}^{2}
-y_{{s}}h+y_{{i}}h={y_{{i}}}^{2}-{y_{{s}}}^{2}
h={\frac {{y_{{i}}}^{2}-{y_{{s}}}^{2}}{y_{{i}}-y_{{s}}}}
h=y_{{i}}+y_{{s}}
Actually, I don't have obvious problems with this exercice, I just find the result quite amazing, for this is really a simple answer... Maybe I'm just unable to deal with such easy answers.

The question is : Is this seems to be right?
Thanks a lot!
P.S: the wording is translated from French... Excuse me for any misunderstanding or English mistake.
Last edited: