MHB Height of Rocket Over Sloping Ground - PRECAL INVERSE FUNCTION PROBLEM

Click For Summary
The discussion revolves around a precalculus problem involving the height of a rocket launched from a sloping cliff. The height function of the rocket is given as h(x) = -2x^2 + 120x, and the slope of the ground is modeled by g(x) = -4x. The height of the rocket above the sloping ground is derived as f(x) = -2x^2 + 124x, with a maximum height of 1922 feet occurring at an x-coordinate of 31 feet. The final part of the discussion involves finding the inverse function relating the x-coordinate to the height, leading to the equation x = 31 - (1/2)√(3844 - 2h). The calculations confirm the maximum height and provide a clear function for further analysis.
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

PRECAL INVERSE FUNCTION PROBLEM PLEASE HELP?


Clovis is standing at the edge of a cliff, which slopes 4 feet downward from him for every 1 horizontal foot. He launches a small model rocket from where he is standing.

With the origin of the coordinate system located where he is standing, and the x-axis extending horizontally, the path of the rocket is described by the formula y= -2x^2 + 120x.

a.) Give a function h = f(x) relating the height h of the rocket above the sloping ground to its x-coordinate.

0 = -2x^2 +124

b.) Find the maximum height of the rocket above the sloping ground. What is its x-coordinate when it is at its maximum height?

MAX: 31, 1922

c.) Clovis measures its height h of the rocket above the sloping ground while it is going up. Give a function x = g(h) relating the x-coordinate of the rocket to h.

The maximum I get for the rocket is (31, 1922)
I am pretty sure it is right because the answer in the back of the book is 31 - 1/2 sqrt3844 - 2h
so the 31 is probably correct!
I just need the answer to C (obviously), I'd really appreciate it if you could guide me through it rather than just answers.
Please no use of Calculus terms, I am in Precalc.

I have posted a link there to this thread so the OP can view my work.
 
Mathematics news on Phys.org
Hello Robin,

We are given the trajectory of the rocket as:

$$h(x)=-2x^2+120x$$

And we may model the surface of the ground by observing it passes through the origin of our coordinate system and has a slope of $-4$. Thus the "ground" function is:

$$g(x)=-4x$$

a.) Give a function h = f(x) relating the height h of the rocket above the sloping ground to its x-coordinate.

The height of the rocket above the ground at $x$ is the difference between the two functions:

$$f(x)=h(x)-g(x)=\left(-2x^2+120x \right)-(-4x)=-2x^2+124x=2x(62-x)$$

I think you meant to give this but simply made a typo and left off the variable of the linear term.

b.) Find the maximum height of the rocket above the sloping ground. What is its x-coordinate when it is at its maximum height?

From part a) we see the two roots of $f(x)$ are:

$$x=0,\,62$$

Now, we know the axis of symmetry, along which the vertex lies, will be midway between the roots. Using the mid-point formula, we then find the axis of symmetry is:

$$x=\frac{0+62}{2}=31$$

The height at the value of $x$ is:

$$f(31)=2\cdot31(62-31)=2\cdot31^2=1922$$

Hence:

$$f_{\max}=f(31)=1922$$

We have found that the rocket reaches a maximum height of 1922 ft at a horizontal distance of 31 ft from the origin.

This agrees with what you found. (Clapping)

c.) Clovis measures its height h of the rocket above the sloping ground while it is going up. Give a function x = g(h) relating the x-coordinate of the rocket to h.

Recall we found:

$$f(x)=-2x^2+124x$$

Arrange in standard quadratic form:

$$2x^2-124x+f=0$$

Application of the quadratic formula yields:

$$x=\frac{124\pm\sqrt{(-124)^2-4(2)(f)}}{2(2)}=\frac{62\pm\sqrt{3844-2f}}{2}$$

Now, since $f$ is not a one-to-one function, we must observe that the relevant domain of $f$ is $$0\le x\le62$$ and so we must take the branch:

$$x=\frac{62-\sqrt{3844-2f}}{2}=31-\frac{\sqrt{3844-2f}}{2}$$
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 53 ·
2
Replies
53
Views
5K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
4K
  • · Replies 20 ·
Replies
20
Views
4K
Replies
4
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 3 ·
Replies
3
Views
4K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 13 ·
Replies
13
Views
5K