Heisenberg uncertainty derivation

tungs10
Messages
2
Reaction score
0
Hi,

I am trying to teach myself some quantum mechanics and here is something I am stuck on. Various derivations of Heisenberg uncertainty start out with two Hermitian operators, usually called A and B to represent position and momentum. Then they define another two operators ∆A and ∆B as:

∆A = A − < A > ∆B = B − < B >

That appears to me to say that ∆A equals operator A minus the expectation value of A. But how can you subtract a number from a matrix? Is an operator like a variable or is it more like a function? If it is like a function, then how can you plug ∆A and ∆B into the Cauchy-Schwartz inequality? This is probably a dumb question, but I don't think I can move on until I sort it out. Example of said derivation at:

"www.physics.ohio-state.edu/~jay/631/uncert1.pdf"[/URL]

Thanks for any help.
 
Last edited by a moderator:
Physics news on Phys.org
<A> is a short way of writing <A>I - which means a diagonal matrix with the number <A> on the diagonal. Matrix I has number 1 at each entry on the diagonal - the identity matrix. That is similar to when you you see A-0. Here 0 stands for the matrix consisting of 0-s, not just one number 0. In such cases the meaning of the symbol must be read from the context.
 
Last edited:
Think of a numeric constant as the following operator: "multiply [the following state function or matrix] by this number."
 
So it is just <A> multiplied by the identity matrix. Thanks, that makes sense. I am glad I found this forum!
 
I read Hanbury Brown and Twiss's experiment is using one beam but split into two to test their correlation. It said the traditional correlation test were using two beams........ This confused me, sorry. All the correlation tests I learnt such as Stern-Gerlash are using one beam? (Sorry if I am wrong) I was also told traditional interferometers are concerning about amplitude but Hanbury Brown and Twiss were concerning about intensity? Isn't the square of amplitude is the intensity? Please...
I am not sure if this belongs in the biology section, but it appears more of a quantum physics question. Mike Wiest, Associate Professor of Neuroscience at Wellesley College in the US. In 2024 he published the results of an experiment on anaesthesia which purported to point to a role of quantum processes in consciousness; here is a popular exposition: https://neurosciencenews.com/quantum-process-consciousness-27624/ As my expertise in neuroscience doesn't reach up to an ant's ear...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
Back
Top