Help in showing that this inner product is zero

Click For Summary
The discussion revolves around demonstrating that the inner product of two plane wave solutions, ##(u_{\vec{k}},u^{*}_{\vec{k}'})##, equals zero. Participants note that the calculation leads to an integral of the form $$\int \exp [i(\vec{k}+\vec{k}')\cdot\vec{x}]\mathrm{d}^3 x$$, which raises questions about the appropriate Hilbert space context, specifically whether it is ##\mathrm{L}^2(\mathbb{R}^3)## or a finite region ##D##. The expectation is that the result should yield a Dirac-delta function, indicating orthogonality when ##\vec{k} \neq \vec{k}'##. Clarification on the setup of the problem is necessary for accurate resolution. The conversation emphasizes the importance of defining the space in which the inner product is calculated.
user1139
Messages
71
Reaction score
8
Homework Statement
I want to show that the inner product between the plane wave solution and its conjugate is zero.
Relevant Equations
The inner product is defined as ##(u_{\vec{k}},u_{\vec{k}'})=-i\int u_{\vec{k}}\partial_{t}u^{*}_{\vec{k}'}-u^{*}_{\vec{k}'}\partial_{t} u_{\vec{k}}\,\mathrm{d}^3 x##
The unormalised plane wave solution is given as ##u_{\vec{k}}=e^{i\vec{k}\cdot\vec{x}-i\omega t}##. I want to show that ##(u_{\vec{k}},u^{*}_{\vec{k}'})=0##. However, I don't seem to be able to get the answer through direct calculation. Any hints on how to obtain the answer?
 
Physics news on Phys.org
Show your work please.
 
Your question is also not well posed. Which Hilbert space are we supposed to work in? Is it ##\mathrm{L}^2(\mathbb{R}^3)## or is it ##\mathrm{L}^2(D)## with some finite region ##D##?
 
It seems that the inner product is propotional to $$\int \exp [i(\vec{k}+\vec{k}')\cdot\vec{x}]\mathrm{d}^3 x.$$

Shouldn't it be a Dirac-delta function?
 
I want to find the solution to the integral ##\theta = \int_0^{\theta}\frac{du}{\sqrt{(c-u^2 +2u^3)}}## I can see that ##\frac{d^2u}{d\theta^2} = A +Bu+Cu^2## is a Weierstrass elliptic function, which can be generated from ##\Large(\normalsize\frac{du}{d\theta}\Large)\normalsize^2 = c-u^2 +2u^3## (A = 0, B=-1, C=3) So does this make my integral an elliptic integral? I haven't been able to find a table of integrals anywhere which contains an integral of this form so I'm a bit stuck. TerryW

Similar threads

Replies
3
Views
2K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
1
Views
1K
Replies
18
Views
2K
Replies
8
Views
2K
Replies
7
Views
2K
Replies
58
Views
6K
Replies
16
Views
2K