sinaphysics
- 8
- 0
Consider:
u(t)=\begin{cases} 1\quad \quad \quad \quad t>0 \\ 0\quad \quad \quad \quad t<0 \end{cases}
Now I want to calculate this:
\int _{ 0 }^{ a }{ \frac { u(t)-u(t-a) }{ { t }^{ 2 } } } dt
whereas: a>0
What is confusing me is this point that should our answer for the integral include the step function again?
u(t)=\begin{cases} 1\quad \quad \quad \quad t>0 \\ 0\quad \quad \quad \quad t<0 \end{cases}
Now I want to calculate this:
\int _{ 0 }^{ a }{ \frac { u(t)-u(t-a) }{ { t }^{ 2 } } } dt
whereas: a>0
What is confusing me is this point that should our answer for the integral include the step function again?