Since the independent variable, t, does not appear in the first problem, it can be handled by "quadrature". Let u= r'. r"= u' and, by the chain rule, u'= du/dt= (du/dr)(dr/dt)= ru'. The equation for u is then ru'+ k/r^2= 0 which can be solved by a direct integration: ru'= -k/r^2 so u'= -k/r^3= -kr^(-3) and, finally, du= -kr^(-3)dr. Integrating, r'= u= (1/2)kr^(-2)+ C. That is a separable equation for r:
\frac{dr}{(1/2)kr^{-2}+ C}= \frac{r^2 dr}{(1/2)k+ Cr^2}= dt
You may find the left side of that to be a very difficult integration.
As for the second, xy"= ay+ b, that is a linear differential equation with constant coefficients. It probably would be simplest to do this by taking y to be a Taylor's series solution. Since the leading coefficient is x, you will have to use Frobenius' method: let
y= \sum_{n=0}^\infty a_n x^{n+c}[/itex] where c is an unknown number, not necessarily positive or integer. Do the differentiations term by term, put into the equation and assume that a<sub>0</sub> is <b>not</b> 0 to get an equation for c (the "indicial" equation). They try to get a recurrance relation for a<sub>n</sub>.