MHB Help Needed: Vectors - Calculate Plane Velocity & Direction

  • Thread starter Thread starter JRoomer
  • Start date Start date
  • Tags Tags
    Vectors
AI Thread Summary
The discussion focuses on calculating the velocity and direction of a plane affected by wind. The plane's speed in still air is 40 km/h at a 65-degree bearing, while the wind blows at 20 km/h from the southeast. The air velocity vector is expressed as A = 40cos(25)i + 40sin(25)j, and the wind vector as W = 20cos(135)i + 20sin(135)j. The resultant velocity is found by adding the air vector and wind vector to determine the track vector. The calculations aim to provide the magnitude and direction of the resultant velocity.
JRoomer
Messages
1
Reaction score
0
Please can anyone help with:

a plane has speed in still air (no wind) of 40kmh-1 and is traveling in a direction of 65 degrees bearing but there is a wind blowing at a speed of 20kmh-1 from the south east. If I is east and J is north, express the velocity p for the plane in no wind and velocity w of the wind in component form.

Then calculate the resultant velocity and magnitude and direction??
 
Mathematics news on Phys.org
a plane has speed in still air (no wind) of 40kmh-1 and is traveling in a direction of 65 degrees bearing but there is a wind blowing at a speed of 20kmh-1 from the south east. If I is east and J is north, express the velocity p for the plane in no wind and velocity w of the wind in component form.

bearing of 65 degrees is measured clockwise from due North = 25 degrees CCW from due East

wind from SE blows toward 135 degrees CCW from East

Air vector ...

$\vec{A}= 40\cos(25)\vec{i}+40\sin(25)\vec{j}$

Wind vector ...

$\vec{W} = 20\cos(135) \vec{i} + 20\sin(135)\vec{j}$Air vector + Wind vector = Track (resultant) vector

can you finish?
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top