AiRAVATA
- 172
- 0
Hello guys. Here I am, bothering all of you again...
I am having troubles proving the following:
For v \in V and \omega \in \Lambda^k(V), show that if v_1,v_2,...,v_n is a basis of V with dual basis \phi_1,\phi_2,...,\phi_n then
i_{v_j}(\phi_{i_1}\wedge ... \wedge \phi_{i_k})=\left\{ \begin{array}{ll} 0 & j\neq \hbox{ any } i_\alpha \\ (-1)^{\alpha-1} \phi_{i_1}\wedge ... \wedge \hat{\phi}_{i_\alpha}\wedge...\wedge \phi_{i_k} & \hbox{if }j=i_\alpha \right.
where i_v \omega (v_1,...,v_{k-1})=\omega(v,v_1,...,v_{k-1}) and \hat{\phi}_{i_\alpha} means we are omitting that term.
Use this result to show that for \omega_1 \in \Lambda^k(V) and \omega_2\in \Lambda^l(V) we have
i_{v}(\omega_1 \wedge \omega_2)=(i_v\omega_1)\wedge \omega_2+(-1)^k\omega_1\wedge(i_v\omega_2).
Here is what I don't understand. In order to prove the first result, I apply the right side to (v_1,...,v_{j-1},v_{j+1},...,v_k), so
i_{v_j}(\phi_{i_1}\wedge ... \wedge \phi_{i_k})(v_1,...,v_{j-1},v_{j+1},...,v_k)=(-1)^{j-1}(\phi_{i_1}\wedge ... \wedge \phi_{i_k})(v_1,...,v_j,...,v_k)=\sum_{\sigma \in S} (-1)^\sigma \sigma (\phi_{i_1}\otimes ...\otimes\phi_{i_k}) (v_1,...,v_j,...,v_k)
I'm stuck at this point. I know I need to evaluate the tensor product, but I'm going nowhere. Please someone enlighten me...
I am having troubles proving the following:
For v \in V and \omega \in \Lambda^k(V), show that if v_1,v_2,...,v_n is a basis of V with dual basis \phi_1,\phi_2,...,\phi_n then
i_{v_j}(\phi_{i_1}\wedge ... \wedge \phi_{i_k})=\left\{ \begin{array}{ll} 0 & j\neq \hbox{ any } i_\alpha \\ (-1)^{\alpha-1} \phi_{i_1}\wedge ... \wedge \hat{\phi}_{i_\alpha}\wedge...\wedge \phi_{i_k} & \hbox{if }j=i_\alpha \right.
where i_v \omega (v_1,...,v_{k-1})=\omega(v,v_1,...,v_{k-1}) and \hat{\phi}_{i_\alpha} means we are omitting that term.
Use this result to show that for \omega_1 \in \Lambda^k(V) and \omega_2\in \Lambda^l(V) we have
i_{v}(\omega_1 \wedge \omega_2)=(i_v\omega_1)\wedge \omega_2+(-1)^k\omega_1\wedge(i_v\omega_2).
Here is what I don't understand. In order to prove the first result, I apply the right side to (v_1,...,v_{j-1},v_{j+1},...,v_k), so
i_{v_j}(\phi_{i_1}\wedge ... \wedge \phi_{i_k})(v_1,...,v_{j-1},v_{j+1},...,v_k)=(-1)^{j-1}(\phi_{i_1}\wedge ... \wedge \phi_{i_k})(v_1,...,v_j,...,v_k)=\sum_{\sigma \in S} (-1)^\sigma \sigma (\phi_{i_1}\otimes ...\otimes\phi_{i_k}) (v_1,...,v_j,...,v_k)
I'm stuck at this point. I know I need to evaluate the tensor product, but I'm going nowhere. Please someone enlighten me...
Last edited: