- #1
- 11
- 0
In this engineering course I'm taking I'm learning how to solve Laplace transforms. Now my ODE class only barely touched on this so I'm not sure if I'm doing this correct so I'd like some help pointing out where I went wrong, if I went wrong anywhere.
[tex]x''(t) + 3 x'(t) + 2x(t) = 0, x(0) = 2, x'(0) = -2[/tex]
My Steps:
-Convert everything into its Laplace Transform
[tex](s^2X - sx(0) - x'(0)) + 3(s'X - x(0)) + /2X) = 0[/tex]
-Replace with initial values
[tex](s^2X - 2s - (-2) ) + 3(s'X - 2) + 2X) = 0[/tex]
-Distribute
[tex]s^2X - 2s + 2 + 3s'X - 6 + 2X = 0[/tex]
-Add like terms
[tex]s^2X - 2s + 3s'X +2X - 4 = 0[/tex]
-Group the s terms, then simplify
[tex]X(s^2 - 3s' + 2) - 2s - 4 = 0[/tex]
-Isolate [tex]X[/tex]
[tex]X = \frac{2s + 4}{s^2 - 3s' + 2}[/tex]
Now I'm not sure if I'm done since I missed one lecture. I'd appreciate it if someone could check over and point over/highlight any errors I made. Please and thank you!
[tex]x''(t) + 3 x'(t) + 2x(t) = 0, x(0) = 2, x'(0) = -2[/tex]
My Steps:
-Convert everything into its Laplace Transform
[tex](s^2X - sx(0) - x'(0)) + 3(s'X - x(0)) + /2X) = 0[/tex]
-Replace with initial values
[tex](s^2X - 2s - (-2) ) + 3(s'X - 2) + 2X) = 0[/tex]
-Distribute
[tex]s^2X - 2s + 2 + 3s'X - 6 + 2X = 0[/tex]
-Add like terms
[tex]s^2X - 2s + 3s'X +2X - 4 = 0[/tex]
-Group the s terms, then simplify
[tex]X(s^2 - 3s' + 2) - 2s - 4 = 0[/tex]
-Isolate [tex]X[/tex]
[tex]X = \frac{2s + 4}{s^2 - 3s' + 2}[/tex]
Now I'm not sure if I'm done since I missed one lecture. I'd appreciate it if someone could check over and point over/highlight any errors I made. Please and thank you!