A Help to rewrite Dirac equation

TimeRip496
Messages
249
Reaction score
5
$$i\frac{\partial \phi}{\partial t} = \frac{1}{2m} (\sigma .P)(\sigma .P)\phi + eφ\phi$$

Rewriting the equation by using B = ∇ × A and e = −|e| (electron charge) leads to a Schr¨odinger like equation:
$$i\frac{\partial \phi}{\partial t} =[ \frac{1}{2m} (-i∇ + |e|A)^2 + \frac{|e|}{2m} σ.B - |e|φ ]\phi$$

How did the B suddenly appear in the second equation? Alll help will be greatly appreciated.
Source: http://physics.sharif.edu/~qmech/puppel.pdf ,Page 21.
 
Physics news on Phys.org
use the identity...(\vec{\sigma}\cdot\vec{a})(\vec{\sigma}\cdot\vec{b}) = \vec{a}\cdot\vec{b}+i(\vec{a}\times\vec{b})\cdot\vec{\sigma}
 
  • Like
Likes TimeRip496 and vanhees71
Also note that this is not the Dirac but the Pauli equation, which can be derived as the 0th order non-relativistic expansion of the Dirac equation (throwing away the antiparticles in the process).
 
  • Like
Likes Demystifier
Dr Transport said:
use the identity...(\vec{\sigma}\cdot\vec{a})(\vec{\sigma}\cdot\vec{b}) = \vec{a}\cdot\vec{b}+i(\vec{a}\times\vec{b})\cdot\vec{\sigma}
Thanks! One last question is why the author lose the mass in this equation, $$i\frac{\partial \phi}{\partial t} = \frac{1}{2m} (\sigma .P)(\sigma .P)\phi + eφ\phi$$

Shouldnt it be like this $$i\frac{\partial \phi}{\partial t} = \frac{1}{2m} (\sigma .P)(\sigma .P)\phi + m\phi + eφ\phi$$?
 
The mass term is just a constant potential, which you can absorb in an overall phase factor ##\exp(-\mathrm{i} m t)##, which cancels the term on the left- and right-hand side of your equation.
 
  • Like
Likes TimeRip496
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!
Back
Top