Help using Green’s functions in solving Differential Equations please

Lambda96
Messages
233
Reaction score
77
Homework Statement
see post
Relevant Equations
none
Hi,

unfortunately I have several problems with the following task:

Bildschirmfoto 2023-07-06 um 10.52.15.png


Bildschirmfoto 2023-07-06 um 10.52.41.png


I have problems with the tasks a, d and e

Unfortunately, the Green function and solving differential equations with the Green function is completely new to me

In task b, I got the following for ##f_h(t)=e^{-at}##.Task a

$$\hat{L}G(t)=\Bigl( \frac{d}{dt} +a \Bigr) \Theta(t) f_h(t)$$
$$\hat{L}G(t)=\frac{d}{dt}\Theta(t) f_h(t) +a \Theta(t) f_h(t)$$
$$\hat{L}G(t)=\delta(t) f_h(t) + \Theta(t) f'_h(t) +a \Theta(t) f_h(t)$$
$$\hat{L}G(t)=\delta(t) f_h(t) -a \Theta(t) f_h(t) +a \Theta(t) f_h(t)$$
$$\hat{L}G(t)=\delta(t) f_h(t)$$

Can I now argue as follows that ##\hat{L}G(t)=\delta(t)## so when I multiply the operator by the Green function, I always get only one value. Then the following ##\delta(t)=\delta(0)## applies, so it follows that ##\delta(t) f_h(t)=\delta(0) f_h(0)## and since ##f_h(0)=1## only ##\delta(t)## remains on the left side of the equationTask d

I assumed that I should calculate the following integral.

$$\tilde{G}(\omega)= \int_{-\infty}^{\infty} dt \ e^{i \omega t} \hat{L} G(t) $$
$$ \tilde{G}(\omega)=\int_{-\infty}^{\infty} dt \ e^{i \omega t} \frac{d}{dt} G(t) +e^{i \omega t} a G(t) $$
$$ \tilde{G}(\omega)=\int_{-\infty}^{\infty} dt \ e^{i \omega t} \frac{d}{dt} G(t) +\int_{-\infty}^{\infty} dt \ e^{i \omega t} a G(t) $$

I then applied partial integration for the first integral

$$ \tilde{G}(\omega)=\biggl[ e^{i \omega t} G(t) \biggr]_{-\infty}^{\infty}-\int_{-\infty}^{\infty} dt \ i \omega e^{i \omega t} G(t) +\int_{-\infty}^{\infty} dt \ e^{i \omega t} a G(t) $$

Now, unfortunately, I don't get any further and I can't do anything with the hint from the task at the moment.
Task e

I thought that a solution may look like the following.

$$ f(t)= \int_{0}^{t} G(t)g(t) dt $$

I then calculated the following integral

$$ f(t)= \int_{0}^{t} G(t)g(t) dt $$
$$ f(t)= \int_{0}^{t} e^{-at} e^{2at} dt $$
$$ f(t)= \frac{e^{at} -1}{a}$$

If I substitute this ##f(t)## into ##\hat{L}f(t)##, I get ##2e^{at}-2## but I should get ##e^{2at}##.
 
Physics news on Phys.org
Lambda96 said:
Task a

$$\hat{L}G(t)=\Bigl( \frac{d}{dt} +a \Bigr) \Theta(t) f_h(t)$$
$$\hat{L}G(t)=\frac{d}{dt}\Theta(t) f_h(t) +a \Theta(t) f_h(t)$$
$$\hat{L}G(t)=\delta(t) f_h(t) + \Theta(t) f'_h(t) +a \Theta(t) f_h(t)$$
$$\hat{L}G(t)=\delta(t) f_h(t) -a \Theta(t) f_h(t) +a \Theta(t) f_h(t)$$
$$\hat{L}G(t)=\delta(t) f_h(t)$$
Just use the property ##f(t)\delta(t) = f(0)\delta(t)##.

Lambda96 said:
Task d

I assumed that I should calculate the following integral.
The problem said to take the Fourier transform of the differential equation.

Lambda96 said:
Task e

I thought that a solution may look like the following.

$$ f(t)= \int_{0}^{t} G(t)g(t) dt $$
Look up convolution.
 
Thanks vela for your help 👍👍👍, with your tips I could solve the tasks now :smile:
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top