Help using Green’s functions in solving Differential Equations please

Click For Summary
The discussion centers on the challenges faced in using Green's functions to solve differential equations, specifically tasks a, d, and e. The user is struggling with establishing the relationship between the Green function and the differential operator, as well as performing Fourier transforms and convolutions. They attempted to derive expressions for the Green function and the solution function but encountered difficulties in correctly applying the properties of delta functions and integrals. Ultimately, with guidance from another user, they were able to resolve their issues and complete the tasks. The conversation highlights the importance of understanding Green's functions and the associated mathematical techniques in solving differential equations.
Lambda96
Messages
233
Reaction score
77
Homework Statement
see post
Relevant Equations
none
Hi,

unfortunately I have several problems with the following task:

Bildschirmfoto 2023-07-06 um 10.52.15.png


Bildschirmfoto 2023-07-06 um 10.52.41.png


I have problems with the tasks a, d and e

Unfortunately, the Green function and solving differential equations with the Green function is completely new to me

In task b, I got the following for ##f_h(t)=e^{-at}##.Task a

$$\hat{L}G(t)=\Bigl( \frac{d}{dt} +a \Bigr) \Theta(t) f_h(t)$$
$$\hat{L}G(t)=\frac{d}{dt}\Theta(t) f_h(t) +a \Theta(t) f_h(t)$$
$$\hat{L}G(t)=\delta(t) f_h(t) + \Theta(t) f'_h(t) +a \Theta(t) f_h(t)$$
$$\hat{L}G(t)=\delta(t) f_h(t) -a \Theta(t) f_h(t) +a \Theta(t) f_h(t)$$
$$\hat{L}G(t)=\delta(t) f_h(t)$$

Can I now argue as follows that ##\hat{L}G(t)=\delta(t)## so when I multiply the operator by the Green function, I always get only one value. Then the following ##\delta(t)=\delta(0)## applies, so it follows that ##\delta(t) f_h(t)=\delta(0) f_h(0)## and since ##f_h(0)=1## only ##\delta(t)## remains on the left side of the equationTask d

I assumed that I should calculate the following integral.

$$\tilde{G}(\omega)= \int_{-\infty}^{\infty} dt \ e^{i \omega t} \hat{L} G(t) $$
$$ \tilde{G}(\omega)=\int_{-\infty}^{\infty} dt \ e^{i \omega t} \frac{d}{dt} G(t) +e^{i \omega t} a G(t) $$
$$ \tilde{G}(\omega)=\int_{-\infty}^{\infty} dt \ e^{i \omega t} \frac{d}{dt} G(t) +\int_{-\infty}^{\infty} dt \ e^{i \omega t} a G(t) $$

I then applied partial integration for the first integral

$$ \tilde{G}(\omega)=\biggl[ e^{i \omega t} G(t) \biggr]_{-\infty}^{\infty}-\int_{-\infty}^{\infty} dt \ i \omega e^{i \omega t} G(t) +\int_{-\infty}^{\infty} dt \ e^{i \omega t} a G(t) $$

Now, unfortunately, I don't get any further and I can't do anything with the hint from the task at the moment.
Task e

I thought that a solution may look like the following.

$$ f(t)= \int_{0}^{t} G(t)g(t) dt $$

I then calculated the following integral

$$ f(t)= \int_{0}^{t} G(t)g(t) dt $$
$$ f(t)= \int_{0}^{t} e^{-at} e^{2at} dt $$
$$ f(t)= \frac{e^{at} -1}{a}$$

If I substitute this ##f(t)## into ##\hat{L}f(t)##, I get ##2e^{at}-2## but I should get ##e^{2at}##.
 
Physics news on Phys.org
Lambda96 said:
Task a

$$\hat{L}G(t)=\Bigl( \frac{d}{dt} +a \Bigr) \Theta(t) f_h(t)$$
$$\hat{L}G(t)=\frac{d}{dt}\Theta(t) f_h(t) +a \Theta(t) f_h(t)$$
$$\hat{L}G(t)=\delta(t) f_h(t) + \Theta(t) f'_h(t) +a \Theta(t) f_h(t)$$
$$\hat{L}G(t)=\delta(t) f_h(t) -a \Theta(t) f_h(t) +a \Theta(t) f_h(t)$$
$$\hat{L}G(t)=\delta(t) f_h(t)$$
Just use the property ##f(t)\delta(t) = f(0)\delta(t)##.

Lambda96 said:
Task d

I assumed that I should calculate the following integral.
The problem said to take the Fourier transform of the differential equation.

Lambda96 said:
Task e

I thought that a solution may look like the following.

$$ f(t)= \int_{0}^{t} G(t)g(t) dt $$
Look up convolution.
 
Thanks vela for your help 👍👍👍, with your tips I could solve the tasks now :smile:
 
I want to find the solution to the integral ##\theta = \int_0^{\theta}\frac{du}{\sqrt{(c-u^2 +2u^3)}}## I can see that ##\frac{d^2u}{d\theta^2} = A +Bu+Cu^2## is a Weierstrass elliptic function, which can be generated from ##\Large(\normalsize\frac{du}{d\theta}\Large)\normalsize^2 = c-u^2 +2u^3## (A = 0, B=-1, C=3) So does this make my integral an elliptic integral? I haven't been able to find a table of integrals anywhere which contains an integral of this form so I'm a bit stuck. TerryW

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
Replies
19
Views
2K
Replies
2
Views
2K
Replies
3
Views
2K
  • · Replies 22 ·
Replies
22
Views
3K
Replies
8
Views
2K
Replies
6
Views
1K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K