Help with covariant differentiation

  • #1
243
5
I'm having trouble evaluating the following expression (LATEX):

##\nabla_{i}\nabla_{j}T^{k}= \nabla_{i} \frac{\delta T^{k}}{\delta z^{j}} + \Gamma^{k}_{i m} \frac{\delta T^{m}}{\delta z^{i}} + \Gamma^{k}_{i m} \Gamma^{m}_{i l} T^{l}##

What are the next steps to complete the covariant differentiation? (This is not a homework assignment)
 
Last edited by a moderator:

Answers and Replies

  • #2
Orodruin
Staff Emeritus
Science Advisor
Homework Helper
Insights Author
Gold Member
16,829
6,652
What are the next steps to complete the covariant differentiation?
Getting the first step correct. Your expression even has different free indices on both sides.
 
  • #3
wrobel
Science Advisor
Insights Author
738
451
If you will
I'm having trouble evaluating the following expression (LATEX):

##\nabla_{i}\nabla_{j}T^{k}= \nabla_{i} \frac{\delta T^{k}}{\delta z^{j}} + \Gamma^{k}_{i m} \frac{\delta T^{m}}{\delta z^{i}} + \Gamma^{k}_{i m} \Gamma^{m}_{i l} T^{l}##

What are the next steps to complete the covariant differentiation? (This is not a homework assignment)
Just use basis and these formulas will be easy to write. For example let ##A=a_i^je^i\otimes e_j## then $$(\nabla_k A)e^k=(\frac{\partial a_i^j}{\partial x^k}e^i\otimes e_j+a_i^j(\nabla_ke^i)\otimes e_j+a_i^je^i\otimes(\nabla_k e_j))\otimes e^k$$ and remember that $$\nabla_ke_i=\Gamma_{ik}^se_s,\quad \nabla_ke^i=-\Gamma_{sk}^ie^s$$
 
  • #4
243
5
Sorry. Better?

##\nabla_{i}\nabla_{j}T^{k}= \nabla_{i} \frac{\delta T^{k}}{\delta z^{j}} + \Gamma^{k}_{j l} \frac{\delta T^{l}}{\delta z^{i}} + \Gamma^{l}_{i m} \Gamma^{k}_{j l} T^{m}##
 
Last edited:
  • #5
243
5
The first covariant derivative I get. I'm having trouble with the second covariant differentiation ##\nabla_{i}## of ##\nabla_{j} T^{k}##, where ##\nabla_{j} T^{k} = \frac{ \delta T^{k}}{\delta z^{j}} + \Gamma^{k}_{j l} T^{l}##.
 
  • #6
Orodruin
Staff Emeritus
Science Advisor
Homework Helper
Insights Author
Gold Member
16,829
6,652
The first covariant derivative I get. I'm having trouble with the second covariant differentiation ##\nabla_{i}## of ##\nabla_{j} T^{k}##, where ##\nabla_{j} T^{k} = \frac{ \delta T^{k}}{\delta z^{j}} + \Gamma^{k}_{j l} T^{l}##.
How does the covariant derivative act on a general type (1,1) tensor? How can you apply that to the type (1,1) tensor ##\nabla_j T^k##?
 
  • #7
243
5
How does the covariant derivative act on a general type (1,1) tensor? How can you apply that to the type (1,1) tensor ##\nabla_j T^k##?
You mean the invariant ##T##? Where ##T=T^{k} z_{k}##?


##\nabla_{j} T = \nabla_{j} T^{k} z_{k} = (\frac{ \delta T^{k}}{\delta z^{j}} + \Gamma^{k}_{j l} T^{l}) z_{k}##?
 
  • #8
Orodruin
Staff Emeritus
Science Advisor
Homework Helper
Insights Author
Gold Member
16,829
6,652
You mean the invariant ##T##? Where ##T=T^{k} z_{k}##?


##\nabla_{j} T = \nabla_{j} T^{k} z_{k} = (\frac{ \delta T^{k}}{\delta z^{j}} + \Gamma^{k}_{j l} T^{l}) z_{k}##?
No, I mean a general type (1,1) tensor ##T_i^j##.
 
  • #9
243
5
##\nabla_{k} T^{i}_{j} = \frac{ \delta T^{i}_{j}}{\delta z^{k}} + \Gamma^{i}_{k m} T^{m}_{j} - \Gamma^{m}_{j k} T^{i}_{m} ##

The tensor ##T^{i}_{j}## can be contracted ## T^{i}_{j} z^{j} = T^{i} ##?
 
  • #10
243
5
##\nabla_{i}\nabla_{j}T^{k}= \nabla_{i} \frac{\delta T^{k}}{\delta z^{j}} + \Gamma^{k}_{j l} \frac{\delta T^{l}}{\delta z^{i}} + \Gamma^{l}_{i m} \Gamma^{k}_{j l} T^{m}##

Is this your suggestion?

##\frac{\delta T }{\delta z^{j}} = \frac{\delta (T^{k} z_{k})}{\delta z^{j}} ## and then solve for ##\frac{\delta T^{k}}{\delta z^{j}}##?
 
  • #11
243
5
One thought I had was to consider ##T^{k}## a function of ##z_{k}##, i.e., ##T^{k} = T^{k}(z_{k})##, such that ##\frac{\delta T^{k}}{\delta z^{j}} = \frac{\delta T^{k}}{\delta z^{k}} \frac{\delta z_{k}}{\delta z^{j}}## and ##\frac{\delta z_{k}}{\delta z^{j}} = \Gamma^{m}_{k j} z_{m}##
 
  • #12
Orodruin
Staff Emeritus
Science Advisor
Homework Helper
Insights Author
Gold Member
16,829
6,652
##\nabla_{k} T^{i}_{j} = \frac{ \delta T^{i}_{j}}{\delta z^{k}} + \Gamma^{i}_{k m} T^{m}_{j} - \Gamma^{m}_{j k} T^{i}_{m} ##

The tensor ##T^{i}_{j}## can be contracted ## T^{i}_{j} z^{j} = T^{i} ##?
No, put ##T^i_j = \nabla_j T^i##.
 
  • #13
243
5
Ahhh. Thanks!!
 

Related Threads on Help with covariant differentiation

  • Last Post
2
Replies
31
Views
4K
Replies
4
Views
7K
  • Last Post
Replies
2
Views
18K
  • Last Post
Replies
4
Views
1K
  • Last Post
Replies
7
Views
28K
Replies
5
Views
3K
Replies
4
Views
721
  • Last Post
Replies
5
Views
1K
  • Last Post
Replies
5
Views
1K
Top