- #1

- 24

- 0

## Homework Statement

The metric is:

ds[tex]^{2}[/tex] = y[tex]^{2}[/tex](dx[tex]^{2}[/tex] + dy[tex]^{2}[/tex])

I have to find the equation relating x and y along a geodesic.

## The Attempt at a Solution

ds = [tex]\sqrt{ydx^{2} + ydy^{2}}[/tex] - is this right?

ds = [tex]\sqrt{y + yy'^{2}}[/tex] dx

F = [tex]\sqrt{y + yy'^{2}}[/tex]

So then I apply the Euler-Lagrange equation

dF/dy - d/dx[dF/dy'] = 0

Now I'm stuck, please help.