Help with this separable differential equation

dmayers94
Messages
16
Reaction score
0
The problem is dx/dt = (x+9)^2.
This is separable so I made it dx / (x+9)^2 = dt.
The only method I can think of using for something like this is partial fraction, but I can't get it to work with A/(x+9) + B/(x+9).
Can anyone find a method that works?
 
Physics news on Phys.org
dmayers94 said:
The problem is dx/dt = (x+9)^2.
This is separable so I made it dx / (x+9)^2 = dt.
The only method I can think of using for something like this is partial fraction, but I can't get it to work with A/(x+9) + B/(x+9).
Can anyone find a method that works?

FYI, the partial fraction decomposition would be \frac{A}{(x+9)}+\frac{B}{(x+9)^2}.

This aside, you can simply use the idea of the power rule for integration. What is the integral of 1/u2, for example?
 
Thread 'Direction Fields and Isoclines'
I sketched the isoclines for $$ m=-1,0,1,2 $$. Since both $$ \frac{dy}{dx} $$ and $$ D_{y} \frac{dy}{dx} $$ are continuous on the square region R defined by $$ -4\leq x \leq 4, -4 \leq y \leq 4 $$ the existence and uniqueness theorem guarantees that if we pick a point in the interior that lies on an isocline there will be a unique differentiable function (solution) passing through that point. I understand that a solution exists but I unsure how to actually sketch it. For example, consider a...
Back
Top