I Help Understanding Equation 3.6 in Covariant Physics by Moataz H. Emam

louvig
Messages
3
Reaction score
0
Screenshot_20230623_170351_Kindle.jpg
I am a physics enthusiast reading Covariant Physics by Moataz H. Emam. In his chapter about Point Particle mechanics there is a transformation equation for a displacement vector. I don't see how he arrived at the final equation 3.6. Is it a chain rule or product rule? Can't seem to figure it out. See attachment. Thanks in advance for any insight.
 
Last edited:
Physics news on Phys.org
It's a bit difficult to read. Also, perhaps needs some context re the author's notation.
 
PeroK said:
It's a bit difficult to read. Also, perhaps needs some context re the author's notation.
Sorry. I tried a screenshot from Kindle instead. I am able to click on it in my smartphone and make it full screen and is legible. The author is showing the covariance of classical mechanics using Einstein index notation. In this instance he is showing the transformation of the position vector which is straightforward and then the transformation of the derivative of the position vector. His point is to show ot transforms like a tensor and is therefore invariant.
 
eq 3.6 has a typo, this index should read ##j## https://web.cortland.edu/moataz.emam/
1687583372935.png


The derivation is straight-forward:
Use that ##\hat{ \textbf{g}}_{i'} = \lambda^k_{i'} \hat{ \textbf{e}}_k ## and ##x^{i'} = \lambda^{i'}_j x^j##.
We get ## d\hat{ \textbf{g}}_{i'} = \hat{ \textbf{e}}_k d \lambda^k_{i'} ## and ##x^{i'} = x^j d\lambda^{i'}_j + \lambda^{i'}_j dx^j##.
And you will obtain the final step in that equation.
 
  • Like
Likes louvig, FactChecker and PeroK
Thank you so much. Makes sense.
 
louvig said:
View attachment 328307I am a physics enthusiast reading Covariant Physics by Moataz H. Emam. In his chapter about Point Particle mechanics there is a transformation equation for a displacement vector. I don't see how he arrived at the final equation 3.6. Is it a chain rule or product rule? Can't seem to figure it out. See attachment. Thanks in advance for any insight.

Everything with primed coordinates was replaced with its transformation. So x’=lambda x and so on.
 
I asked a question here, probably over 15 years ago on entanglement and I appreciated the thoughtful answers I received back then. The intervening years haven't made me any more knowledgeable in physics, so forgive my naïveté ! If a have a piece of paper in an area of high gravity, lets say near a black hole, and I draw a triangle on this paper and 'measure' the angles of the triangle, will they add to 180 degrees? How about if I'm looking at this paper outside of the (reasonable)...
From $$0 = \delta(g^{\alpha\mu}g_{\mu\nu}) = g^{\alpha\mu} \delta g_{\mu\nu} + g_{\mu\nu} \delta g^{\alpha\mu}$$ we have $$g^{\alpha\mu} \delta g_{\mu\nu} = -g_{\mu\nu} \delta g^{\alpha\mu} \,\, . $$ Multiply both sides by ##g_{\alpha\beta}## to get $$\delta g_{\beta\nu} = -g_{\alpha\beta} g_{\mu\nu} \delta g^{\alpha\mu} \qquad(*)$$ (This is Dirac's eq. (26.9) in "GTR".) On the other hand, the variation ##\delta g^{\alpha\mu} = \bar{g}^{\alpha\mu} - g^{\alpha\mu}## should be a tensor...

Similar threads

Replies
29
Views
3K
Replies
9
Views
1K
Replies
12
Views
2K
Replies
13
Views
4K
Replies
5
Views
2K
Replies
1
Views
2K
Replies
40
Views
5K
Back
Top