Hilbert Transform, Causality, PI Controller

AI Thread Summary
The discussion centers on the causality of the PI controller, which is defined as a causal filter with a frequency response of H(w) = Ki/(iw) + Kp. It is noted that a causal filter must satisfy the relationship H(w) = G(w) - i G_hat(w), where G_hat(w) is the Hilbert transform of G(w). Participants clarify that the gain terms Ki and Kp can be chosen freely without violating causality. Additionally, the distinction between a PID controller and its potential non-causal characteristics is mentioned, emphasizing that a standard PI controller remains causal. Ultimately, the consensus is that the selection of gain terms does not impact the causality of the filter.
angryturtle
Messages
1
Reaction score
0
TL;DR Summary
Help understanding why PI controller is causal.
I was told that PI controller is a causal filter, and has frequency response represented by H(w) = Ki/(iw)+ Kp.

I was also told that causal filter should satisfy this relationship H(w) = G(w) -i G_hat(w) where G_hat(w) is the Hilbert transform of G(w).

Does this mean that we cannot freely select gain Ki and Ki/w must be the Hilbert transform of Kp?
 
Engineering news on Phys.org
Good afternoon. I learned the theory of automatic control. But It's hard for me to understand your question. Maybe you'll give more information? Example, for which object of control you'll plan to use PI-controller?
 
angryturtle said:
Summary: Help understanding why PI controller is causal.

I was told that PI controller is a causal filter, and has frequency response represented by H(w) = Ki/(iw)+ Kp.

I was also told that causal filter should satisfy this relationship H(w) = G(w) -i G_hat(w) where G_hat(w) is the Hilbert transform of G(w).

Does this mean that we cannot freely select gain Ki and Ki/w must be the Hilbert transform of Kp?

If you mean a PID controller, it would seem to satisfy the criteria of being LTI and dependent only on current and past inputs, no? So how could it be non-causal? If the PID characteristics could be altered real-time by itself (like in Machine Learning), then it would no longer be time-invariant, but I think that is a different situation...

https://en.wikipedia.org/wiki/Causal_filter

https://en.wikipedia.org/wiki/PID_controller
 
angryturtle said:
Summary: Help understanding why PI controller is causal.

Does this mean that we cannot freely select gain Ki and Ki/w must be the Hilbert transform of Kp?
No. You can choose any gain terms and this filter will remain causal.
 
Hi all I have some confusion about piezoelectrical sensors combination. If i have three acoustic piezoelectrical sensors (with same receive sensitivity in dB ref V/1uPa) placed at specific distance, these sensors receive acoustic signal from a sound source placed at far field distance (Plane Wave) and from broadside. I receive output of these sensors through individual preamplifiers, add them through hardware like summer circuit adder or in software after digitization and in this way got an...
I have recently moved into a new (rather ancient) house and had a few trips of my Residual Current breaker. I dug out my old Socket tester which tell me the three pins are correct. But then the Red warning light tells me my socket(s) fail the loop test. I never had this before but my last house had an overhead supply with no Earth from the company. The tester said "get this checked" and the man said the (high but not ridiculous) earth resistance was acceptable. I stuck a new copper earth...
I am not an electrical engineering student, but a lowly apprentice electrician. I learn both on the job and also take classes for my apprenticeship. I recently wired my first transformer and I understand that the neutral and ground are bonded together in the transformer or in the service. What I don't understand is, if the neutral is a current carrying conductor, which is then bonded to the ground conductor, why does current only flow back to its source and not on the ground path...
Back
Top