- #1

nn2e19

- 1

- 0

Hello,

I want to size my system to be able to get rid of fluids without any head buildup within the container. I am just a bit confused as to what formula I should use. My problem is summed up in the following schematic. Note that P1>P2, I have assumed H=10^(-4)m and my flow rate is 0.1 m3/s, dynamic viscosity is 10^(-3) Pa.s. the pipe length is 3.2m. I do not really care about the numbers, I just want to be sure the methodology is correct.

If I use the Bernoulli eqn to size D_hole I use this: Q = Cd*Area*sqrt(2*(g*H+dP/rho)), Area = pi*D_hole^2/4

If I use the same dP and flowrate to get D_pipe I use Q = ((dP-rho*g*L*sin(theta)*pi*D^4)/(128μL))

I'm just baffled as to which one is more suitable for my problem.

Any help is greatly appreciated.

I want to size my system to be able to get rid of fluids without any head buildup within the container. I am just a bit confused as to what formula I should use. My problem is summed up in the following schematic. Note that P1>P2, I have assumed H=10^(-4)m and my flow rate is 0.1 m3/s, dynamic viscosity is 10^(-3) Pa.s. the pipe length is 3.2m. I do not really care about the numbers, I just want to be sure the methodology is correct.

If I use the Bernoulli eqn to size D_hole I use this: Q = Cd*Area*sqrt(2*(g*H+dP/rho)), Area = pi*D_hole^2/4

If I use the same dP and flowrate to get D_pipe I use Q = ((dP-rho*g*L*sin(theta)*pi*D^4)/(128μL))

I'm just baffled as to which one is more suitable for my problem.

Any help is greatly appreciated.