MHB How Accurate is Lagrange Interpolation for Approximating Cos(0.75)?

Hero1
Messages
9
Reaction score
0
Problem:
Use the Lagrange interpolating polynomial of degree three or less and four digit chopping arithmetic to approximate cos(.750) using the following values. Find an error bound for the approximation.

cos(.6980) = 0.7661
cos(.7330) = 0.7432
cos(.7680) = 0.7193
cos(.8030) = 0.6946

The actual value of cos(.7500) = 0.7317 (to four decimal places). Explain the discrepancy between the actual error and the error bound.

_________________________________________________________________________________________________

Solution:
The approximation of cos(.7500) 0.7313. The actual error is 0.0004, and an error bound is 2.7 × 10-8. The discrepancy is due to the fact that the data are given only to four decimal places.

_________________________________________________________________________________________________

Can anyone help me figure out the intermediary steps from the problem to solution?
 
Mathematics news on Phys.org
I managed to figure out the solution to the problem myself, however, I am disappointed that no one responded to my thread.
 
Hero said:
I managed to figure out the solution to the problem myself, however, I am disappointed that no one responded to my thread.


Hi Hero,

I'm sorry no one responded to your thread. Over 95% of our threads get responded to, so believe me it's not a normal occurrence. Can you post how you solved the problem for us? Other people in the future might find it useful :)

Jameson
 
Jameson said:
Hi Hero,

I'm sorry no one responded to your thread. Over 95% of our threads get responded to, so believe me it's not a normal occurrence. Can you post how you solved the problem for us? Other people in the future might find it useful :)

Jameson

I can't post it until after the course is over. I don't want my instructor thinking that I stole online content.
 
Hero said:
I can't post it until after the course is over. I don't want my instructor thinking that I stole online content.

You posted the question here hoping someone else would answer it. How is your posting your own work different than someone else posting their work?

I guess if you just won't post your solution, then ok but I don't quite get it. As a rule of thumb I would suggest that you be comfortable with anything you post on this site to be read by anyone.

Again, sorry you didn't get any help but give it one more try and when another question comes up and I'm sure you'll find some help. I'll make sure our staff knows that you have a question if you post next time.
 
Jameson said:
You posted the question here hoping someone else would answer it. How is your posting your own work different than someone else posting their work?

I guess if you just won't post your solution, then ok but I don't quite get it. As a rule of thumb I would suggest that you be comfortable with anything you post on this site to be read by anyone.

Again, sorry you didn't get any help but give it one more try and when another question comes up and I'm sure you'll find some help. I'll make sure our staff knows that you have a question if you post next time.

I will post it
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Back
Top