How can educators use technology to improve math education?

  • Thread starter Thread starter Astronuc
  • Start date Start date
  • Tags Tags
    Mathematics
Astronuc
Staff Emeritus
Science Advisor
Gold Member
Messages
22,340
Reaction score
7,138
http://www.mathematicssurvivalkit.ca/

Professor Jack Weiner taught at the University of Guelph from 1974 to 1976. He spent the next five years at Parkside High School in Dundas, Ontario. In 1982, he was re-recruited by Guelph and has been happily teaching and writing there ever since. He has won both the University of Guelph Professorial Teaching Award and the prestigious Ontario Conderation of University Faculty Associations Teaching Award. He has been listed as ...

How to get an 'A' in Math!
1) After class, DON'T do your homework! Instead, read over your class notes. When you come to an example done in class...

2) DON'T read the example. Copy out the question, set your notes aside, and do the question yourself. Maybe you will get stuck. Even if you thought you understood the example completely when the teacher went over it in class, you may get stuck.

And this is GOOD NEWS! Now, you know what you don't know. So, consult your notes, look in the text, see your teacher/professor. Do whatever is necessary to figure out the steps in the example that troubled you.

From the Best of Our Knowledge
ALBANY, NY (2007-11-12) THE MATHEMATICS SURVIVAL KIT ,
Pt. 1 of 2 -
If you listen to public radio on the weekends, you have likely heard a university math professor who is also the Math Guy. But if your tastes run more to television, you may have also seen the Friday night CBS show, Numbers, in which a curious young math wiz named Charlie, solves crimes using mathematics. Regardless of your viewing or listening habits, it's apparent more emphasis is being placed on math.

Now, comes The Mathematics Survival Kit. It's written by Professor Jack Weiner from the University of Guelph in Ontario, Canada. Weiner has partnered with education software provider, Maple, to produce an interactive e-book version of his math survival book. The University of Guelph has taken the lead introducing e-books , intelligent assessment systems, and podcasts nto its math curriculum. This next generation of educational technology provides teachers with ore time to motivate students and improve their comprehensive retention.

Student's interest in math, grade averages, and success rates have reportedly improved. . . . .
http://www.publicbroadcasting.net/wamc/news.newsmain?action=article&ARTICLE_ID=1178516
 
Last edited by a moderator:
Mathematics news on Phys.org
Great site, thanks for the heads up Astronuc
 
The buy now link doesn't work.
It's $15.95 in chapters in Canada. Doesn't seem to be available on amazon for those south of the border.
 
I suspect it's Canadian dollars.

On the buy now page - Call Gloria at (519) 824-4120, ext. 56874 for details. or

Better strategy: call Nelson customer service at 1-800-268-2222 to purchase the book and BE SURE TO SPECIFY THE REVISED EDITION (ISBN 0176418474)!

I am not advertising or endorsing. I thought this might be useful of educators.

I'll be contacting Jack Weiner about this.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top