JohanL
- 154
- 0
Find the eigenvalues of the hamiltonian
<br /> H=a(S_A \cdot S_B+S_B \cdot S_C+S_C \cdot S_D+S_D \cdot S_A)<br />
where S_A, S_B, S_C, S_D are spin 1/2 objects
_________________________
I rewrite it as
<br /> H=(1/2)*a*[(S_A+S_B+S_C+S_D)^2-(S_A+S_C)^2-(S_B+S_D)^2]<br />
then i define
<br /> J_1=S_A+S_B+S_C+S_D<br />
<br /> J_2=S_A+S_C<br />
<br /> J_3=S_B+S_D<br />
and uses
<br /> J^2_i |j_1j_2j_3;m_1m_2m_3> = (h^2) j_i(j_i+1)|j_1j_2j_3;m_1m_2m_3><br />
which gives the energies
<br /> E(j_1,j_2,j_3)=(h^2/2)*a*[j_1(j_1+1)-j_2(j_2+1)-j_3(j_3+1)]<br />
Where j_1 is addition of four angular momentum of 1/2 which gives it values of 0 1, 2 and in the same way j_2 and j_3 have values of 0 1.
Am i doing this the right way? It doesn't feel so
<br /> H=a(S_A \cdot S_B+S_B \cdot S_C+S_C \cdot S_D+S_D \cdot S_A)<br />
where S_A, S_B, S_C, S_D are spin 1/2 objects
_________________________
I rewrite it as
<br /> H=(1/2)*a*[(S_A+S_B+S_C+S_D)^2-(S_A+S_C)^2-(S_B+S_D)^2]<br />
then i define
<br /> J_1=S_A+S_B+S_C+S_D<br />
<br /> J_2=S_A+S_C<br />
<br /> J_3=S_B+S_D<br />
and uses
<br /> J^2_i |j_1j_2j_3;m_1m_2m_3> = (h^2) j_i(j_i+1)|j_1j_2j_3;m_1m_2m_3><br />
which gives the energies
<br /> E(j_1,j_2,j_3)=(h^2/2)*a*[j_1(j_1+1)-j_2(j_2+1)-j_3(j_3+1)]<br />
Where j_1 is addition of four angular momentum of 1/2 which gives it values of 0 1, 2 and in the same way j_2 and j_3 have values of 0 1.
Am i doing this the right way? It doesn't feel so

Last edited: