jim hardy
Science Advisor
Homework Helper
Dearly Missed
- 9,832
- 4,898
Great job on that schematic.
take a look at valve data sheet
http://content.smcetech.com/pdf/PVQ.pdf
page 686 chart 1 is the transfer curve for your valve which by part# has 1.6mm orifice
would paste it if i could
it shows four different curves, one for each of four pressures
Curve D is for 0.2 mpa which i think is 29psi.
Observe valve doesn't begin to open until 140 ma at 29 psi
and at lower pressure, even higher current
So with discrete current steps of 20 ma , that'd sure resemble a "leap" at the last step.
Now i don't know if that's what is happening
but it deserves a look.
That the two valves behave differently suggests they have different internal friction
now go to page 684, section " working principle "
cutaway drawing of PVQ30
coil and core make an electromagnet that pulls UP on the armature to open the valve.
Armature is pulled down by gravity and pushed down by spring.
That's the balance that determines how far the valve is open, electromagnetic pull vs gravity and spring.
Almost.
There's one more UP force:
incoming air pressure underneath that black valve disc pushing up.
That's why it opens at different currents for different pressures.
Clearly the designers chose spring and area of orifice carefully to balance all the forces. That's what valve designers do.
If you take it apart don't be surprised if the disc is not flat on bottom but has a Cyrano deBergerac "nose" protruding down into the incoming air passage. I don't know if it will but that's a trick used on giant steam valves.
And that "up" force from air is why it could be unstable if current isn't controlled with authority. But we'll get to that later on.
For now, check very carefully those two valves... time how long it takes each to fill a garbage bag or balloon with air at known pressure and current. More air pressure will give more consistent results, as indicated by that family of curves on page 686.
Does this make sense ?
Objective now is to resolve difference in the two valves.
If it were mine and it indeed proved sticky, i'd consider cleaning it with rubbing alcohol or something. Don't use tap water it's too dirty. Microscopic grit in the sliding surfaces will be deadly.
Follow with a half hour air blow dry, half current to warm it.
See precaution about temperature, it should be kept below 100C.
What do you think ?
old jim
Okay...Lexilighty said:I am doing between 0 to 24 psi for moving air through the valve.
take a look at valve data sheet
http://content.smcetech.com/pdf/PVQ.pdf
page 686 chart 1 is the transfer curve for your valve which by part# has 1.6mm orifice
would paste it if i could
it shows four different curves, one for each of four pressures
Curve D is for 0.2 mpa which i think is 29psi.
Observe valve doesn't begin to open until 140 ma at 29 psi
and at lower pressure, even higher current
So with discrete current steps of 20 ma , that'd sure resemble a "leap" at the last step.
Now i don't know if that's what is happening
but it deserves a look.
That the two valves behave differently suggests they have different internal friction
now go to page 684, section " working principle "
cutaway drawing of PVQ30
coil and core make an electromagnet that pulls UP on the armature to open the valve.
Armature is pulled down by gravity and pushed down by spring.
That's the balance that determines how far the valve is open, electromagnetic pull vs gravity and spring.
Almost.
There's one more UP force:
incoming air pressure underneath that black valve disc pushing up.
That's why it opens at different currents for different pressures.
Clearly the designers chose spring and area of orifice carefully to balance all the forces. That's what valve designers do.
If you take it apart don't be surprised if the disc is not flat on bottom but has a Cyrano deBergerac "nose" protruding down into the incoming air passage. I don't know if it will but that's a trick used on giant steam valves.
And that "up" force from air is why it could be unstable if current isn't controlled with authority. But we'll get to that later on.
For now, check very carefully those two valves... time how long it takes each to fill a garbage bag or balloon with air at known pressure and current. More air pressure will give more consistent results, as indicated by that family of curves on page 686.
Does this make sense ?
Objective now is to resolve difference in the two valves.
If it were mine and it indeed proved sticky, i'd consider cleaning it with rubbing alcohol or something. Don't use tap water it's too dirty. Microscopic grit in the sliding surfaces will be deadly.
Follow with a half hour air blow dry, half current to warm it.
See precaution about temperature, it should be kept below 100C.
What do you think ?
old jim
Last edited: