MHB How Can I Determine the Values of p, q, r, and s in This Mathematical Problem?

  • Thread starter Thread starter anemone
  • Start date Start date
AI Thread Summary
The mathematical problem involves determining the values of positive real numbers p, q, r, and s that satisfy the equations p + q + r + s = 12 and pqrs = 27 + pq + pr + ps + qr + qs + rs. Using the AM-GM inequality, it is established that pqrs must equal 81, leading to the conclusion that p, q, r, and s must all be equal to 3. This conclusion arises because equality in the AM-GM inequality occurs only when all variables are equal. Although the solution is confirmed, the discussion raises the question of whether other solutions exist, suggesting further exploration with different initial values. Ultimately, the consensus is that p = q = r = s = 3 is the only solution that meets the given conditions.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Hi MHB,

I have encountered a problem and I am not being able to figure out the answer.

Problem:

Given that $p, q, r, s$ are all positive real numbers and they satisfy the system

$p+q+r+s=12$

$pqrs=27+pq+pr+ps+qr+qs+rs$

Determine $p, q, r$ and $s$.

Attempt:

The AM-GM inequality for both $p, q, r, s$ and $pq,pr,ps,qr,qs,rs$ are:

[TABLE="class: grid, width: 700"]
[TR]
[TD]1.[/TD]
[TD]$\dfrac{p+q+r+s}{4} \ge \sqrt[4]{pqrs}$ which then gives $(\dfrac{12}{4})^4 \ge pqrs$ or $pqrs \le 81$[/TD]
[/TR]
[TR]
[TD]2.[/TD]
[TD]$\dfrac{pq+pr+ps+qr+qs+rs}{6} \ge \sqrt[6]{(pqrs)^3}$

which then gives $(\dfrac{pqrs-27}{6})^2 \ge pqrs$

$(pqrs-81)(pqrs-81) \ge 0$

$pqrs \le 9$ or $pqrs \ge 81$[/TD]
[/TR]
[/TABLE]

After that, I don't see how to proceed...should I conclude that since we need to find $pqrs$ that satisfy both of the inequalities below

$pqrs \le 81$ and $pqrs \ge 81$

$\therefore pqrs=81$ and and obviously the answer would be $p=q=r=s=3$?
 
Mathematics news on Phys.org
On your second AM-GM inequality, you get $(pqrs-81)(pqrs-9) \ge 0$, with the individual inequalities that you found.

In the beginning of the problem, you specified that $p,q,r,s$ are real. Is that correct? If so, I see no way of nailing down all four values, given only two equations. Certainly, $p=q=r=s=3$ works, but what guarantee do we have that there isn't another solution? E.g., try setting $p=q=2$, and solving the resulting system for $r,s$, and see if there is a solution.

[EDIT] See Opalg's post below for a correction.
 
anemone said:
Hi MHB,

I have encountered a problem and I am not being able to figure out the answer.

Problem:

Given that $p, q, r, s$ are all positive real numbers and they satisfy the system

$p+q+r+s=12$

$pqrs=27+pq+pr+ps+qr+qs+rs$

Determine $p, q, r$ and $s$.

Attempt:

The AM-GM inequality for both $p, q, r, s$ and $pq,pr,ps,qr,qs,rs$ are:

[TABLE="class: grid, width: 700"]
[TR]
[TD]1.[/TD]
[TD]$\dfrac{p+q+r+s}{4} \ge \sqrt[4]{pqrs}$ which then gives $(\dfrac{12}{4})^4 \ge pqrs$ or $pqrs \le 81$[/TD]
[/TR]
[TR]
[TD]2.[/TD]
[TD]$\dfrac{pq+pr+ps+qr+qs+rs}{6} \ge \sqrt[6]{(pqrs)^3}$

which then gives $(\dfrac{pqrs-27}{6})^2 \ge pqrs$

$(pqrs-81)(pqrs-81) \ge 0$

$pqrs \le 9$ or $pqrs \ge 81$[/TD]
[/TR]
[/TABLE]

After that, I don't see how to proceed...should I conclude that since we need to find $pqrs$ that satisfy both of the inequalities below

$pqrs \le 81$ and $pqrs \ge 81$

$\therefore pqrs=81$ and and obviously the answer would be $p=q=r=s=3$?
It looks as though you have solved this problem. You have shown that either $pqrs\leqslant9$ or $pqrs\geqslant 81$. But the equation $pqrs=27+pq+pr+ps+qr+qs+rs$ shows that $pqrs\geqslant27$, so that rules out the first of those possibilities. We are left with the second one, $pqrs\geqslant 81$. But you have also shown that $pqrs\leqslant 81$. Therefore $pqrs = 81$. That implies that equality occurs in the AM-GM inequality, and that only happens when all four quantities are equal. So $p=q=r=s=3$.
 
Ackbach said:
On your second AM-GM inequality, you get $(pqrs-81)(pqrs-9) \ge 0$, with the individual inequalities that you found.

In the beginning of the problem, you specified that $p,q,r,s$ are real. Is that correct? If so, I see no way of nailing down all four values, given only two equations. Certainly, $p=q=r=s=3$ works, but what guarantee do we have that there isn't another solution? E.g., try setting $p=q=2$, and solving the resulting system for $r,s$, and see if there is a solution.

[EDIT] See Opalg's post below for a correction.

Thanks Ackbach for your reply.

Opalg said:
...We are left with the second one, $pqrs\geqslant 81$. But you have also shown that $pqrs\leqslant 81$. Therefore $pqrs = 81$. That implies that equality occurs in the AM-GM inequality, and that only happens when all four quantities are equal. So $p=q=r=s=3$.

Hi Opalg, thank you so much for pointing out that equality holds in the AM-GM inequality only if all of the quantities involved are equal...this is something I have totally forgotten about.:o

I understand it all now! Thanks guys!
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top