poutsos.A
- 102
- 1
How do we prove in predicate calculus using the laws of universal end existential quantifiers,propositional calculus,and those of algebra the following??
There exists a unique x, xε{ 2,4,6} such that if yε{ 0,1,2} then x^{2}y<10.
or in quantifier form:
\exists !x[ xεA & \forall y(yεB------> x^{2}y<10)]
where A={ 2,4,6} and B={ 0,1,2}
There exists a unique x, xε{ 2,4,6} such that if yε{ 0,1,2} then x^{2}y<10.
or in quantifier form:
\exists !x[ xεA & \forall y(yεB------> x^{2}y<10)]
where A={ 2,4,6} and B={ 0,1,2}