NANDHU001 said:
What I meant is that the initial momentum was contributed by 'm' alone with 'M' at rest,
later when 'm' loses a momentum of 'F x t' the mass 'M' gains a momentum of ' 2xFxt ' (as force is double at 2d than that at d,force is now 2F). To conserve momentum when 'm' loses a momentum of 'Fxt' , 'M' should gain the same (ie, F x t) but here it ' is ' 2xFxt.
Thanks zoobyshoe for your interest.
You are welcome. Part of the problem, at least, may be that you are using the formula for
impulse and calling it
momentum.
If you stick to one concept at a time, you should be able to see there's no violation. If you are worried that conservation of momentum may have been violated, then momentum is the quantity to account for, mass x velocity. All the momentum is initially in the smaller moving mass, as you say, then some, or all of it is transferred to the larger mass.
Let's suppose this to be a one dimensional elastic collision. The small mass has some momentum composed of its mass times its velocity. The large mass is at rest.
When the small mass hits the lever at 2d, the initial mv of the small mass, channeled through the lever, acts on the larger mass as though it (the small mass) had twice the mass it actually has, BUT it also acts on the larger mass as if it (the small mass) only had 1/2 the velocity it actually has.
If the initial momentum of the small mass were, for instance, composed of 2kg 's of mass by 12 m/s of velocity = 24 kg*m/s of momentum, acting through the lever would increase its effective mass to 4kg, BUT it would cut its velocity in half to 6 m/s. Therefore, it would be acting on the larger mass at rest with a momentum of 24 kg*m/s, exactly the same momentum it had before it hit the lever.