A. Neumaier
Science Advisor
- 8,700
- 4,780
p.726, which you cite, says that the quark masses determined by lattice QCD are bare masses (i.e., parameters of the bare Lagrangians in a suitable approximation) and not physical masses (poles of the propagator). Trying to get the latter by fits to experiment produces values that violate causality: The Kallen-Lehmann decomposition of the propagator contains complex conjugate quark poles where the squared mass ##m^2## has a negative real part, while causality requires masses to be real and nonnegative. This implies that a quasi-free space based on the Fock construction but with the fitted Kallen-Lehmann decomposition leads to an indefinite inner product. Therefore it is not a Fock space in the sense in which the term is used by mathematical physicists (where a Hilbert space must result) but only an ''indefinite Fock space'' of the kind @samalhayat mentioned in a related thread.Haelfix said:you can take the Hadronic spectrum and compute a Quark 'mass'. Where 'mass' as you might expect is a bit of a fuzzy scheme dependent concept inside a strongly interacting composite object (it is certainly not the usual pole in the propagater, considering that there are strongly divergent infrared effects at play). In any event this is an active area of research (see the pdg section on this (p726))
http://pdg.lbl.gov/2015/download/rpp2014-Chin.Phys.C.38.090001.pdf
As a consequence, the (non-free) field operators for quarks can also be defined only on a Krein space - i.e., a generaliziation of a Hilbert space obtained by replacing the definiteness condition of the inner product by the weaker nondegeneracy condition.
Last edited: