MHB How can the given equation be verified without using a calculator?

  • Thread starter Thread starter mathdad
  • Start date Start date
AI Thread Summary
The equation cos(1 + π/2) = -sin(1) can be verified without a calculator by using the trigonometric identity cos(θ + π/2) = -sin(θ). A geometric approach involves visualizing a cosine wave shifted left by π/2, which aligns with the sine wave. Alternatively, applying the cosine addition formulas can also confirm the equation. Some participants noted that using identities is simpler than graphing trigonometric functions, which they typically avoid by using online tools. Understanding these identities is crucial for manual verification of trigonometric equations.
mathdad
Messages
1,280
Reaction score
0
The instructions are as follows:

Use your calculator to verify the given equation.

cos (1 + pi/2) = - sin 1

I was easily able to do this with my calculator. My question, however, is: how can I verify the equation without my calculator?
 
Mathematics news on Phys.org
It comes right from the identity $\cos\left({\theta+\pi/2}\right)=-\sin\left({\theta}\right)$, or just think about it geometrically. Draw a cosine shifted to the left by $\pi/2$ and compare it with a regular sine wave. Or, apply the cosine addition formulas if you're familiar with them.
 
Another approach:

Use the identity

$$\cos(\theta\pm\varphi)=\cos(\theta)\cos(\varphi)\mp\sin(\theta)\sin(\varphi)$$

and the facts that

$$\cos\left(\frac{\pi}{2}\right)=0,\quad\sin\left(\frac{\pi}{2}\right)=1$$
 
greg1313 said:
Another approach:

Use the identity

$$\cos(\theta\pm\varphi)=\cos(\theta)\cos(\varphi)\mp\sin(\theta)\sin(\varphi)$$

and the facts that

$$\cos\left(\frac{\pi}{2}\right)=0,\quad\sin\left(\frac{\pi}{2}\right)=1$$

I am familiar with this identity even though it is several chapters away in my textbook. I took a class at NYC Technical College in the late 1980s called Algebra 2 and Trigonometry. We used this formula quite a bit in that class aka MA185.

- - - Updated - - -

Rido12 said:
It comes right from the identity $\cos\left({\theta+\pi/2}\right)=-\sin\left({\theta}\right)$, or just think about it geometrically. Draw a cosine shifted to the left by $\pi/2$ and compare it with a regular sine wave. Or, apply the cosine addition formulas if you're familiar with them.

Thank you but I think using the trig identity is a lot easier than graphing cosine or any of the other trig functions. I do not recall the last time I had to graph a trig function by hand. For all graphs, I just use mathway.com or wolfram.
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top