How can the moment of inertia of an object be calculated on an arbitrary axis?

AI Thread Summary
The moment of inertia tensor is typically calculated with the origin at the center of mass, but this can complicate calculations. To find the moment of inertia about an arbitrary axis, one often uses the parallel axis theorem, which allows for adjustments from the center of mass to the desired pivot point. Calculating the inertia tensor in a more convenient coordinate system, such as at the base of the object, is generally recommended before transforming it to the center of mass system. This approach simplifies the process and is commonly found in textbooks. Understanding these transformations is essential for accurate calculations of moment of inertia.
TheCanadian
Messages
361
Reaction score
13
This seems to be a crucial detail that I just glossed over, but when finding the inertia tensor of an object, is the origin always situated at the object centre of mass?

For example: In the link (http://hepweb.ucsd.edu/ph110b/110b_notes/node26.html ), is it necessary to do the integral from -s/2 to s/2 in each dimension as opposed to 0 to s if finding the inertia through the CoM?

Also, how exactly can one find the moment of inertia of an object on an arbitrary axis? Referring back to the link, if one wanted to find the moment of inertia on an axis making 30 degrees with the horizontal (but still running through the CoM), how exactly could the inertia tensor be transformed to do this?
 
Physics news on Phys.org
The moment of inertia that you need is the one about the pivot point - the point about which the object is rotated. It is usually convenient to calculate this by taking the momen of inertia about the center of mass and use the parallel axis theorem to move to the point you want.
 
Your moment of inertia tensor is only true for where you center your origin. In most cases centering your coordinate system at the center of mass and calculating the tensor from there is complicated. The usual method for these problems is first calculating your inertia tensor in a "convenient" coordinate system (usually at the base of your solid) and then performing a simple matrix operation on your tensor to "move it" into the center of mass coordinate system. If you'd like me to show you how to do so I can, although most textbooks on the subject will have an example on it as well.
 
Mercy said:
Your moment of inertia tensor is only true for where you center your origin. In most cases centering your coordinate system at the center of mass and calculating the tensor from there is complicated. The usual method for these problems is first calculating your inertia tensor in a "convenient" coordinate system (usually at the base of your solid) and then performing a simple matrix operation on your tensor to "move it" into the center of mass coordinate system. If you'd like me to show you how to do so I can, although most textbooks on the subject will have an example on it as well.

I think I got it. Although I would be happy to read any material you might have.
 
The rope is tied into the person (the load of 200 pounds) and the rope goes up from the person to a fixed pulley and back down to his hands. He hauls the rope to suspend himself in the air. What is the mechanical advantage of the system? The person will indeed only have to lift half of his body weight (roughly 100 pounds) because he now lessened the load by that same amount. This APPEARS to be a 2:1 because he can hold himself with half the force, but my question is: is that mechanical...
Hello everyone, Consider the problem in which a car is told to travel at 30 km/h for L kilometers and then at 60 km/h for another L kilometers. Next, you are asked to determine the average speed. My question is: although we know that the average speed in this case is the harmonic mean of the two speeds, is it also possible to state that the average speed over this 2L-kilometer stretch can be obtained as a weighted average of the two speeds? Best regards, DaTario
Some physics textbook writer told me that Newton's first law applies only on bodies that feel no interactions at all. He said that if a body is on rest or moves in constant velocity, there is no external force acting on it. But I have heard another form of the law that says the net force acting on a body must be zero. This means there is interactions involved after all. So which one is correct?
Back
Top