How Can the Stability of a Kapitza Pendulum Be Demonstrated?

HansBu
Messages
24
Reaction score
5
Homework Statement
I am having confusion with regards to the proof of my problem. This involves a pendulum with harmonically driven pivot and the task is to show that the pendulum is stable in the inverted position when the amplitude of the driving acceleration is sufficiently high. For reference, consider the problem below.

> Consider a pendulum with harmonically driven pivot. The equation of motion is
$$\frac{d^2\theta}{dt^2}=-\frac{g+a_d(t)}{L}\sin\theta$$
where $$a_d(t)=A_0\sin(2\pi t/T_d)$$ is the time-varying acceleration of the pivot. Show that when the amplitude of the driving acceleration is sufficiently high $$A_0\gg g$$ the pendulum is stable in the inverted position i.e., if $$\theta(t=0)\approx180°$$.
Relevant Equations
$$\frac{d^2\theta}{dt^2}=-\frac{g+a_d(t)}{L}\sin\theta$$
where $$a_d(t)=A_0\sin(2\pi t/T_d)$$ is the time-varying acceleration of the pivot.
I understand that when $$A_0 \gg g$$, the g term in the equation of motion can be dropped. The equation of motion then becomes
$$\frac{d^2\theta}{dt^2}=-\frac{a_d(t)}{L}\sin\theta$$

But how can I show that the pendulum is stable for such case? I am totally clueless.
 
Physics news on Phys.org
Is there any condition on ##T_d##? Say ##T_d=\infty## the inverted pendulum is unstable.
 
looks like an ill - understood Kapitza's pendulum
 
mitochan said:
Is there any condition on ##T_d##? Say ##T_d=\infty## the inverted pendulum is unstable.
Hi, mitochan! There were no specified conditions for ##T_d## given in the problem.
 
wrobel said:
looks like an ill - understood Kapitza's pendulum
It is quite consistent with the mechanics of Kapitza's pendulum. I presume that something is wrong in the problem, right?
 
I do not know.

Anyway stability of the Kapitza pendulum is proved by means of KAM theory. All this field is far beyond undergraduate courses.
 
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...

Similar threads

Back
Top