We're given
[TABLE="class: grid, width: 750"]
[TR]
[TD]$\dfrac{a+b}{a+\sqrt{1+a^2}}+b^2=0$[/TD]
[TD]$\dfrac{a^2}{b^2}+2\sqrt{1+a^2}+b^2=3$[/TD]
[/TR]
[TR]
[TD]If we let $f(a)=a+\sqrt{1+a^2}$, we see that[/TD]
[TD]Observe that[/TD]
[/TR]
[TR]
[TD]1. $f(a) \ne 0$,
2. $f(a) > 0$ for all $a$ since
$\;\;\;\;$when $a \rightarrow \ -\infty$, $f(a) \rightarrow 0$
$\;\;\;\;$when $a \rightarrow \infty$, $f(a) \rightarrow \infty$
View attachment 1678[/TD]
[TD]$\sqrt{1+a^2} \ge 1$ for all $a$ and hence we have $2\sqrt{1+a^2} \ge 2$.
Thus, $\dfrac{a^2}{b^2}+2\sqrt{1+a^2}+b^2=3$ is true when the following inequality holds.
$\dfrac{a^2}{b^2}+b^2 \le 1$
$a^2+b^4 \le b^2$
$b^4 \le b^2-a^2$
$b^4 \le (a+b)(b-a)$[/TD]
[/TR]
[TR]
[TD]Thus, $\dfrac{a+b}{a+\sqrt{1+a^2}}+b^2=0$ is feasible iff $a+b<0$---(*).[/TD]
[TD]Since $b^4 \ge 0$, and $a+b<0$(from *), we know $b-a<0$---(**).[/TD]
[/TR]
[/TABLE]
These two inequalities (*) and (**) suggest that $b<0$.
Now, if we let
$k=a+\sqrt{1+a^2}=f(a)>0$, $\rightarrow a=\dfrac{k^2-1}{2k}$
and substitute these two into the equation $\dfrac{a+b}{a+\sqrt{1+a^2}}+b^2=0$, we get
$\dfrac{\dfrac{k^2-1}{2k}+b}{k}+b^2=0$
$\dfrac{\dfrac{k^2-1+2bk}{2k}}{k}+b^2=0$
$\dfrac{k^2-1+2bk}{2k^2}+b^2=0$
$k^2-1+2bk+2k^2b^2=0$
$(1+2b^2)k^2-(2b)k-1=0$
Solving it for $k$ by the quadratic formula, we obtain
$k=\dfrac{b\pm \sqrt{3b^2+1}}{1+2b^2}$
Since $k>0$, and $b<0$, we can say at this point that $k=\dfrac{b+ \sqrt{3b^2+1}}{1+2b^2}$, which in turn tells us we have only one value of $x$ as the answer.
Now, the only answer to this problem, like Ackbach has mentioned is $(x,y)=(0, -1)$.