How Can You Prove a Process is Markov?

  • Thread starter Thread starter vale
  • Start date Start date
  • Tags Tags
    Process
vale
Messages
3
Reaction score
0
This is my first time here, so... Hi everybody!

I've very little time to figure out the following problem ... and I am wandering if some of you can give me any help or just suggest me any good reading material...

The question is how you can prove a process P_t, given the dynamics, is Markov.
In short my process is on alternate intervals, a mean reverting brownian bridge dP_t = \frac{\alpha}{G-t}(Q-P_t)dt + \sigma dW_t, and a mean reverting proportional volatility process : dP_t = K(\theta -P_t)dt + \nu dW_t. The length of the intervals and their occurence is determined by an exogenous bootstrap procedure, which I believe, doesn't give any problems, being a resampling procedure with replacement, it doesn't generate any dependence with the past history...

How should I procede on your opinion? Any hints ?

Thank you very much in advance,
Vale
 
Physics news on Phys.org
Could this be of any help? When you say prove, do you mean empirically or mathematically?
 
Thank you for the reference and the reply!

Actually I meant a mathematical proof...
I think I should show somehow the transition probabilities are independent from the past realizations... but I don't Know how to retrieve them from the dynamic... :rolleyes:

Many thanks...
Vale
 
I guess I'd argue W(t) is independent of the past. Then equate Eq. (1) to Eq. (2) and solve for P(t). It'll be a function of t, W(t) and some constants. Since W is independent of the past, so's P(t).

{P.S. Oh, whoops! You said "on alternating intervals." Does that mean the two Eq's do not hold simultaneously?}

{P.P.S. In that case:

P(t+1) = P(t) + dP(t) = P(t) + a(dt) P(t) + b dW(t) = [a(dt)+1] P(t) + b dW(t).

Et+1[P(t+1)|P(t),P(t-1)...,P(0)] = (a+1) Et+1[P(t)|P(t),P(t-1)...,P(0)] + b Et+1[dW(t)|P(t),P(t-1)...,P(0)] = (a+1) P(t) + b Et+1[dW(t)]. QED

The last step is based on two premises: (i) E[X|X,Y,Z,...] = X, and (ii) dW(t) is independent of past history so E[dW(t)|P(t),P(t-1)...,P(0)] = E[dW(t)].}
 
Last edited:
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Thread 'Detail of Diagonalization Lemma'
The following is more or less taken from page 6 of C. Smorynski's "Self-Reference and Modal Logic". (Springer, 1985) (I couldn't get raised brackets to indicate codification (Gödel numbering), so I use a box. The overline is assigning a name. The detail I would like clarification on is in the second step in the last line, where we have an m-overlined, and we substitute the expression for m. Are we saying that the name of a coded term is the same as the coded term? Thanks in advance.
Back
Top