Mondon
- 2
- 0
Homework Statement
\frac{dx}{dy}=\frac{k y-40\sqrt{x^2+y^2}}{k x}
Given the parameters conditions (0,0),(1000,0)
Homework Equations
substitution v=\frac{x}{y}
The Attempt at a Solution
\frac{dv}{\frac{1}{v}-v-\frac{40}{k v}\sqrt{v^2+1}}=\frac{dy}{y}
\frac{-1}{2}\ln({40\sqrt{v^2+1}+k+v^2k})=\ln{(y)}+c
k(\frac{x^2}{y^2}-1)+40\sqrt{1+\frac{x^2}{y^2}}=cy^{-2}
Sooo how could I possibly use my limits? I end up with a discontinuity at y=0 or is there some horrible mistake in my solution?
Last edited: