MHB How can you solve the eight-digit challenge?

  • Thread starter Thread starter soroban
  • Start date Start date
  • Tags Tags
    Challenge
soroban
Messages
191
Reaction score
0

Place the digits 1 through 8 in the boxes
so that no two consecutive digits are adjacent
(not vertically, horizontally or diagonally).
. . \begin{array}{cccccccccc}&& * & - & * & - & * \\ && | && | && | \\ * &-& * &-& * &-& * &-& * \\ | && | && | && | && | \\ * &-& * &-& * &-& * &-& * \\ && | && | && | \\ && * & - & * & - & * \end{array}
 
Mathematics news on Phys.org
The two central boxes are adjacent to the most other boxes, so it makes sense to put 1 and 8 in them to maximize our options (since 0 and 9 are not valid digits). By horizontal symmetry, it doesn't really matter what order we put them in. So we start with:​

Code:
  ? ?
? 1 8 ?
  ? ?

Here we automatically deduce that 7 must go in the leftmost box and 2 in the rightmost box, otherwise there would be two adjacent consecutive numbers. Hence:

Code:
  ? ?
7 1 8 2
  ? ?

Hence we have 3, 4, 5, and 6 left to place. We see that 6 must be in one of two boxes on the right, and 3 must be in one of the boxes on the left. Furthermore, 4 and 5 cannot be put adjacent to one another. This forces the following configuration (up to symmetry):

Code:
  3 5
7 1 8 2
  4 6

And the puzzle is solved.
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top