How Did They Do This & Second Line? Help Appreciated

  • Thread starter Thread starter Superposed_Cat
  • Start date Start date
Superposed_Cat
Messages
388
Reaction score
5
How did they did they do the second line? Any help appreciated, thanks in advance.
 

Attachments

  • eq0020MP.gif
    eq0020MP.gif
    2.7 KB · Views: 519
Physics news on Phys.org
You know the rules of integration right? Imagine differentiating x^3. You get 3x^2.
Now reverse the differentiation.

So integrating 3x^2 you first increase the power and then divide by the new power. So...

1) Raise the power: 3x^3
2) Divide by the new power: \frac{3}{3}x^3 = x^3

That's all that's happening on the second line.
 
##\int 3x^\frac{3}{4}+7x^{-5}+\frac{1}{6}x^{-\frac{1}{2}}\ dx=\int 3x^\frac{3}{4}\ dx+\int 7x^{-5}\ dx+\int \frac{1}{6}x^{-\frac{1}{2}}\ dx## using the sum rule for integrals##\int 3x^\frac{3}{4}\ dx+\int 7x^{-5}\ dx+\int \frac{1}{6}x^{-\frac{1}{2}}\ dx=3\int x^\frac{3}{4}\ dx+7\int x^{-5}\ dx+\frac{1}{6}\int x^{-\frac{1}{2}}\ dx## using the constant multiple rule for integrals##3\int x^\frac{3}{4}\ dx+7\int x^{-5}\ dx+\frac{1}{6}\int x^{-\frac{1}{2}}\ dx=3\cdot\frac{1}{\frac{3}{4}+1} x^{\frac{3}{4}+1}+7\cdot\frac{1}{-5+1}x^{-5+1}+\frac{1}{6}\cdot\frac{1}{-\frac{1}{2}+1} x^{-\frac{1}{2}+1}+c## using the integral formula ##\int x^\alpha\ dx=\frac{1}{a+1}x^{\alpha+1}+c## when ##\alpha\neq-1##
 
  • Like
Likes 1 person
Profuse thanks dear sir.
 
Back
Top