I How Do Ashcroft and Mermin Derive the Conversion from Equation 22.6 to 22.9?

  • I
  • Thread starter Thread starter raisins
  • Start date Start date
  • Tags Tags
    3d Phonons
raisins
Messages
3
Reaction score
1
Hi all,

I'm reading through Chapter 22 of Ashcroft and Mermin and am having difficulty deriving an equation. Could someone please show me (or outline the steps) how Ashcroft and Mermin convert the quadratic term in Eqn. (22.6) to Eqn. (22. 9)? (pictures attached).

ashcroft-mermin-1.png
ashcroft-mermin-2.png


Thanks in advance :)
 
Physics news on Phys.org
That's just Einstein summation convention. If you imagine a vector-like quantity ##\mathbf a = (a_1, a_2, ..., a_n)##, the dot-product with another vector-like quantity is the sum of the product of the i-components, that is ##\sum_i a_ib_i##. With Einstein convention, you just don't write the ##\sum_i## and it is understood that a summation has to be performed for every repeated index like ##a_ib_i##.

In this example the vector ##\mathbf u(R) - \mathbf u(R') = \mathbf a## and ##\nabla = (\frac {\partial }{\partial x_1}, \frac {\partial }{\partial x_2}, ..., \frac {\partial }{\partial x_n}) = \mathbf b##. So, if you use the convention, you would write ##[u_i(R) - u_i(R') ]\frac {\partial} {\partial x_i}##. Of course you have to do it 2 times because it is squared and that is way you get 2 indices and the second derivatives.

Note that if you look up Einstein convention for the dot product you might encounter expressions like ##a_i b^i##. There is a reason to have "upper" and "lower" indices, but it is essential only when you are dealing with a non-cartesian system of coordinates (like in relativity). Here you are fine and don't need to bother.
 
  • Like
Likes Spinnor and Haborix
I concur with @dRic2's answer, but I think Ashcroft/Mermin are abusing notation. As far as I can tell, you have to assume that neither of the derivations act on the ##u##'s of the other factor. If you tried to do the calculation in the normal course of index notation you might not get what they do.
 
The derivatives are partial derivatives. It means they operate only upon the indexed quantity. I do not see the problem.
 
hutchphd said:
The derivatives are partial derivatives. It means they operate only upon the indexed quantity. I do not see the problem.
Ah, fair enough.
 
Hi. I have got question as in title. How can idea of instantaneous dipole moment for atoms like, for example hydrogen be consistent with idea of orbitals? At my level of knowledge London dispersion forces are derived taking into account Bohr model of atom. But we know today that this model is not correct. If it would be correct I understand that at each time electron is at some point at radius at some angle and there is dipole moment at this time from nucleus to electron at orbit. But how...
Back
Top