How do classical and quantum mesh?

Cocacolacan
Messages
15
Reaction score
0
I have a question for the enlightened minds.

In physics class we found our debrouille (sp?) wavelength, we found that an average human gives a ridiculously small wavelength. H/p. Now what happens when you do this to an electric current in an exposed wire? (6.626E(-34) m2 kg / s)/(9.11E(-31)*(0.0002 m/s) (the speed electrons flow in a wire, but this can be changed). But that gives you a wavelength of 36.3215m and a frequency of 8.2369 MHz. This is pretty close to the RF of remote control cars, and in between AM/FM frequencies. Would there be a way to this up through a tuner of some sort? Or is this how the technology behind radio transmissions works?
 
Physics news on Phys.org
de Broglie, which is roughly pronounced the way you spelled it.

The waves you are referring to are classical electromagnetic waves, not matter waves. The electrons in traveling in a current exhibit two types of velocities, one being their own, individual velocity, and the other being their drift velocity. Basically electrons scatter off of impurities and other electrons in a metal, so even though they are going rediculously fast, their average displacement ends up being very small (that's the drift velocity).

I think that if you did the calculation with their true velocity (in between scattering) then you would get a de Broglie wavelength that is much much smaller.
 
lbrits said:
de Broglie, which is roughly pronounced the way you spelled it.

Actually, I believe its pronounced "debroy".
 
True, I meant the way he spelled it, not I =)
But yes, that is the proper rendition.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!

Similar threads

Replies
5
Views
1K
Back
Top