yungman
- 5,741
- 294
Let \;\vec r\;'\; be position vector pointing to the source. \;\vec r\; be the position vector pointing to a field point. Therefore the distance from the source and field point is:
\vec {\eta} =\vec r -\vec r\;' \;\hbox { and }\; \eta = \sqrt{r^2+r'^2 - 2rr'cos\theta}= r \sqrt{1+\left (\frac{r'}{r}\right )^2 -2\frac{r'}{r} cos \theta}
Where \;\theta\; is the angle between the two vector.
For r'<<r, Why is the book than say
\vec {\eta} =\vec r -\vec r\;' \;\hbox { and }\; \eta = \sqrt{r^2+r'^2 - 2rr'cos\theta}= r \sqrt{1+\left (\frac{r'}{r}\right )^2 -2\frac{r'}{r} cos \theta} = r \left (1-\frac {r'}{r} cos \theta\right )
I know for r'<<r, \left ( \frac {r'}{r}\right )^2\approx \;0. But how can you remove the square root.
\vec {\eta} =\vec r -\vec r\;' \;\hbox { and }\; \eta = \sqrt{r^2+r'^2 - 2rr'cos\theta}= r \sqrt{1+\left (\frac{r'}{r}\right )^2 -2\frac{r'}{r} cos \theta}
Where \;\theta\; is the angle between the two vector.
For r'<<r, Why is the book than say
\vec {\eta} =\vec r -\vec r\;' \;\hbox { and }\; \eta = \sqrt{r^2+r'^2 - 2rr'cos\theta}= r \sqrt{1+\left (\frac{r'}{r}\right )^2 -2\frac{r'}{r} cos \theta} = r \left (1-\frac {r'}{r} cos \theta\right )
I know for r'<<r, \left ( \frac {r'}{r}\right )^2\approx \;0. But how can you remove the square root.