How do I solve this integrals?(dy/secˆ2(y))(dx/(-xˆ2 + x))

  • Thread starter Thread starter FrostScYthe
  • Start date Start date
FrostScYthe
Messages
80
Reaction score
0
How do I solve this integrals?

(dy/secˆ2(y))

(dx/(-xˆ2 + x))
 
Physics news on Phys.org
FrostScYthe said:
How do I solve this integrals?

(dy/secˆ2(y))

Partial integration or use the formula's linking cos(x) to cos(2x)

(dx/(-xˆ2 + x))

Partial fractions .

marlon
 
Last edited:
FrostScYthe said:
How do I solve this integrals?

(dy/secˆ2(y))

(dx/(-xˆ2 + x))
#1, \int \frac{dy}{\sec ^ 2 y} = \int \frac{dy}{\frac{1}{\cos ^ 2 y}} = \int \cos ^ 2 y dy
Now, do you know the Double-angle formulae?
#2, I'll give you a hint, try to complete the square in the denominator, then use u-substitution, and it's done:
\int \frac{dx}{-x ^ 2 + x} = - \int \frac{dx}{x ^ 2 - x}
Can you go from here? :)
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top