How Do Inelastic Collisions Distribute Energy Between Heat and Sound?

AI Thread Summary
Inelastic collisions lead to energy dissipation, primarily as heat and sound, but predicting the exact distribution is complex. The analogy of electrical circuits, particularly inductors, helps conceptualize momentum conservation and energy loss during collisions. Energy can be lost as heat if no electromagnetic radiation occurs, while larger structures can enhance energy radiation. The physical dimensions and shape of colliding masses influence the amount of energy radiated as sound. Overall, calculating the acoustic radiation resistance for colliding objects remains challenging and impractical.
DuckAmuck
Messages
238
Reaction score
40
In collisions that are inelastic or partially elastic, how can we predict how much of the energy lost to the surroundings becomes heat, and how much becomes sound? What determines that fraction?
 
Physics news on Phys.org
My own field is electrical engineering and I often translate problems such as these into an electrical analogy when seeking a simple solution.
A moving mass is equivalent to an inductor having zero loss resistance, with its ends connected together and with a circulating current. Rather like a superconductor magnet. To represent a collision, we can connect two of these together and then suddenly cut a common shorting wire so the current now passes through both. The momentum is conserved, L1I1 L2I2 = L3I3. However, energy is lost. The question arises, where does it go? If there is no radiation of EM waves, it dissipates as heat. To maximise radiation, we would make the circuit physically large, so that radiation resistance appears and dissipates some of the energy. We might also add capacitance to the circuit to obtain a damped sine wave oscillation. The radiation resistance of structures can be calculated - that is antenna engineering. The same happens for colliding masses. The size and shape of the physical structure will dictate how much energy is radiated by coupling to the air. There is the possibility of a damped sine wave oscillation caused by springiness in the system. But I don't think that in general it will be practicable to calculate the acoustic radiation resistance for something like colliding balls and to predict the sound energy radiated.
 
The rope is tied into the person (the load of 200 pounds) and the rope goes up from the person to a fixed pulley and back down to his hands. He hauls the rope to suspend himself in the air. What is the mechanical advantage of the system? The person will indeed only have to lift half of his body weight (roughly 100 pounds) because he now lessened the load by that same amount. This APPEARS to be a 2:1 because he can hold himself with half the force, but my question is: is that mechanical...
Some physics textbook writer told me that Newton's first law applies only on bodies that feel no interactions at all. He said that if a body is on rest or moves in constant velocity, there is no external force acting on it. But I have heard another form of the law that says the net force acting on a body must be zero. This means there is interactions involved after all. So which one is correct?
Let there be a person in a not yet optimally designed sled at h meters in height. Let this sled free fall but user can steer by tilting their body weight in the sled or by optimal sled shape design point it in some horizontal direction where it is wanted to go - in any horizontal direction but once picked fixed. How to calculate horizontal distance d achievable as function of height h. Thus what is f(h) = d. Put another way, imagine a helicopter rises to a height h, but then shuts off all...

Similar threads

Replies
10
Views
4K
Replies
9
Views
1K
Replies
6
Views
2K
Replies
18
Views
2K
Replies
2
Views
6K
Replies
1
Views
1K
Back
Top