Obviously you can get m=m from F=ma:
F=ma by proposition
ma=ma by substitution
You are not supposed to lose the starting relation which involves 'F'. There is no point to ma=ma expression, it's useless repetition without any practical meaning or implication. It does not answer the question, which is how one of the symbols relates to all the rest in a given equation.
I don't even remotely agree with that. First, it is inconsistent with the definition of cause and effect. Second, I think that I have been extremely clear and consistent that all three (c, ε0, and μ0) are artifacts of the system of units, not each other.
So now even c doesn't actually exist? Is that personal speculation? I didn't see any of the papers you kindly posted here says anything like that about the speed of light. They do say ε0 and μ0 are unit convention artifacts and not actual physical properties, but no one says anything like that about c.
You can ignore all those equations apply to different materials just the same as for vacuum, and you can shift values around to completely get rid of ε0 and μ0 for vacuum specific equations. But you can not get rid of the speed of light and impedance of free space, they do have, and must have, actual values in any units convention system, because they are actually real.
Obviously the factors are not and cannot be different.
They are not, in those particular equations, rather than "cannot be". In any case it's surprising and I'm giving it a closer look.
If they were then magnetic waves and electric waves would travel at different speeds.
Magnetic and electric waves are not separate waves with their individual speeds, it's one wave consisting of both electric and magnetic fields, which limited by combination of their permittivity and permeability in vacuum are constricted to moving at the speed of light.
That's the original Maxwell's interpretation and practical meaning of electromagnetic wave equation. So then the speed of light comes out from Newton's equation for the speed of sound, which similarly works for transverse waves traveling along a string:
...where K is a coefficient of stiffness/tension (permittivity), and p is density (permeability), and then you know exactly what is the cause and what is the effect.
http://en.wikipedia.org/wiki/On_physical_lines_of_force
You clearly do not know this material, which is fine, we are here to help you learn. But it will require you to ditch this argumentative attitude and adopt a learning attitude. Please study the material already provided, and then come back with questions about points that you do not understand. Further arguments or personal speculation will result in a closure of the thread.
I understand this material in the form of Coulomb's law, Biot-Savart law, and Lorentz force, which I deem is exactly sufficient. Of course, that I, just like you, think that it is me who actually understands better, is irrelevant. That's what we are supposed to find out, and the more we learn on the way, the better. It's a win-win situation any way it turns around.